産業機器用 IC/ICs for Industrial Equipment

BA6411

ROHM CO LTD

れています。

40E D

7828999 0003836 0 🔤 RHM =

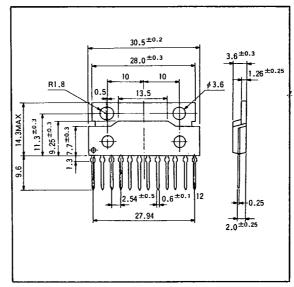
BA6411

2相 DD モータドライバ 2-Phase DD Motor Driver 7-52-13-25

BA6411は,2相全波リニア駆動方式のDDモータドライバ 用ICです。ホールアンプ,コントロール回路,正反転切 換え回路,ドライバ,ホール素子用定電圧回路から構成さ

ホール素子からの信号をそのままホールアンプで増幅し、出力端に伝えてモータを駆動します (リニア駆動方式)。ホールアンプの利得は、外部からのコントロール電流によって制御できるため、モータの回転数をFGで検出しF-I変換したものをフィードバックすることにより、サーボ回路を構成できます。

The BA6411 is a DD motor driving IC of 2-phase all-wave linear driving system. It consists of Hall amplifier, control circuit, regular/reverse revolution switching circuit, driver and constant voltage circuit for Hall elements.


● 特長

- 1) リニア駆動のため、スイッチングノイズが少ない。
- 2) 正逆転切換え機能が付いている。
- 3) ホール素子電源用定電圧端子を備えている。
- 4) 許容損失が大きい。
- 5) 出力電流対コントロール電流比が大きい (4200Typ.)。
- 6) 消費電流が少ない (Io=2.5mA Typ.)。

● 用途

VTR, ビデオディスクプレーヤ コンパクトディスクプレーヤ テープレコーダ, レコードプレーヤ

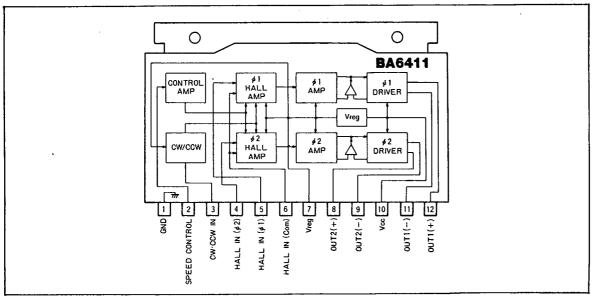
● 外形寸法図/Dimensions (Unit:mm)

Features

- 1) Small switching noise due to linear driving system.
- Provided with switching function of regular/reverse revolutions.
- Provided with a constant voltage terminal for Hall element power supply.
- 4) Large allowable loss.
- Large ratio of output current against control current (4200 Typ.).
- 6) Small power consumption (Io=2.5mA Typ.).

Applications

VTRs, video disc players Compact disc players Tape recorders, record players


● 絶対最大定格 / Absolute Maximum Ratings (Ta=25℃)

Parameter	Symbol	Limits	Unit V mW	
電源電圧	Vcc	20		
許容損失	Pd	3 000*		
最大出力電流	Гом	1.2	Α	
定電圧最大出力電流	I reg Max 45		mA	
動作温度範囲	Topr	−20~75	င	
保存温度範囲	Tstg	-55~150	ొ	

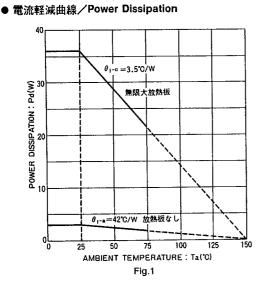
^{*} Ta=25℃以上で使用する場合は、電力軽減曲線 (Fig.1)を参照すること

● ブロックダイアグラム/Block Diagram

T-52-13-25

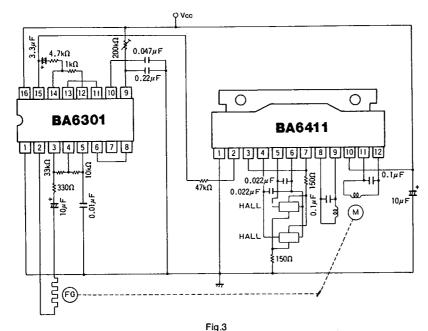
● 推奨動作条件/Recommended Operating Conditions (Ta=25℃)

Parameter	Symbol	Min.	Тур.	Max.	Unit
電源電圧	Vcc	9.0	12.0	18.0	٧


● 電気的特性/Electrical Characteristics (Ta=25℃)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Test Circuit
無信号時電流	lo		2.5	5.0	mA	1cont=0A	Fig.2
定電圧出力 1	Vregt	6.2	7.0	7.8	٧	負荷電流 I reg =10mA	Fig.2
定電圧出力 2	Vreg2	6.1	6.9	7.8	٧	負荷電流 Ireg =30mA	Fig.2
正反転スレッショルド	V _{TH} CW/CCW	V reg -4.5	V reg 1.3	V reg -0.5	٧	_	Fig.2
3pin流出電流	Гоитз	300	650	1000	μA	V3=0V	Fig.2
4pin入力バイアス電流	l IN4	-	0.25	2.0	μА	ICONT =100µA	Fig.2
5pin入力バイアス電流	IN5	_	0.25	2.0	μA	ICONT =100µA	Fig.2
6pin入力バイアス電流	l IN6	_	0.5	4.0	μΑ	I CONT =100µA	Fig.2
モータ駆動電圧	Vo	8.3		_	V	8pin—9pin, 11pin—12pin間の電圧 I CONT =400 μA, I OUT= 800mA	Fig.2
2pin電流対出力電流比 (1)	lout /Icont	3500	4200	5500	_	$I_{CONT} = 100 \mu A$ $V_6 - V_5 (V_4) = \pm 100 mV$	Fig.2
2pin電流対出力電流比 (2)	l out /l cont	3500	4200	5500		I OUT =40mA V ₈ -V ₅ (V ₄)=±100mVオフセット分 を除く	Fig.2
φ1, φ2電流比	_	0.8	1.0	1.2	_	$I CONT = 100 \mu A$ $V_6 - V_5 (V_4) = \pm 100 mV$	Fig.2
定電圧温度特性	∆TV reg	_	400	_	ppm	負荷電流 I _{reg} =10mA Ta=-20 ~75℃	Fig.2

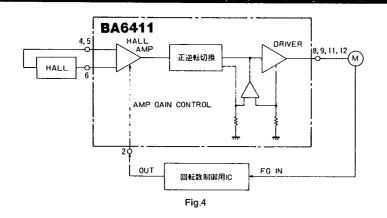
産業機器用 IC/ICs for Industrial Equipment


● 測定回路図/Test Circuit

T-52-13-25

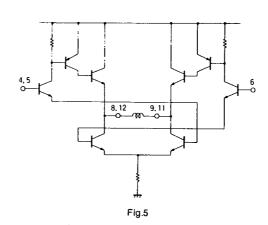
● 応用例/Application Example

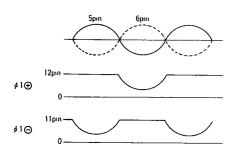
● 動作説明

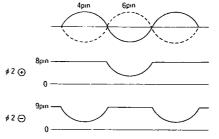

(1) ホール素子からの信号は、ホールアンプで増幅されま すが、この時のアンプゲインは、2pin入力電流(速度制御入 力)によって可変します。その信号が、正逆転切換え回路 を通り、ドライバ回路へ供給されます。ドライバ回路のゲ インは一定のため、出力電流の大きさは、ホール入力電圧 のレベルと2pin入力電流により決まります。

したがって、モータの回転数をFGで検出し、その出力を

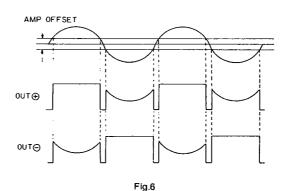
F-I 変換して、2pinフィードバックをかければ、回転数を 一定にすることができます。


つまり、(1) モータの回転数が下がる→(2) 2pin入力電流(制 御入力) が大きくなる (回転数制御用IC) →(3) ホールアンプ のゲインが大きくなる→(4) 出力電流が大きくなる→(5) モータの回転数があがる――となって回転数が一定になり ます。


T-52-13-25



(2) 出力電流の流れについては、6pinに対し4pinの電圧が高 い時のみ、その電圧差に応じた出力電流が8pinから9pinの 方向に流れます。逆に4pinに対し6pinの電圧が高いときは、 出力電流は9pinから8pinへ流れます。


6pinに対し5pinの電圧が高い時のみ、その電圧差に応じた 出力電流が12pinから11pjnの方向に流れます。逆に5pin に対し6pinの電圧が高い時は、出力電流は11pinから 12pinへ流れます。

(3) 実際の出力波形は、Fig.6のようになります。出力が正 から負へ切換わる期間はOPEN状態になります(これは、 アンプにオフセットがあるためです)。よってこの期間は、 IC側のインピーダンスが高くなるため、この間の出力波 形は外付けによって決まります。一般的には、コイル負荷 となるので、バックラッシュ電圧の発生を抑えるためコン デンサを接続します。

BA6411

T-52-13-25

● 使用上の注意

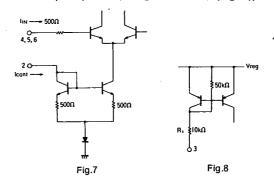
(1) ホール入力について

ホール入力には、50mV_{P-P}以上の信号を6-4pin及び6-5pin 間に加えます。DCレベルの入力範囲は2V~(Vreg-1.5)V です。

V_{reg}/2を中心に入力すれば問題ありません。ホール入力の 入力インピーダンスは、1MΩ以上のため、どのタイプの ホール素子でも接続可能です。

BA6411は、リニア駆動のため、ホール素子出力にDCオ フセットがあれば、そのまま増幅して出力されますので、 なるべくDCオフセットの少ないものを使用してください。 (2) 入力インピーダンス (入力部回路)

1) 2pin (速度制御入力)


2V_F + 500Ωが直列に入っています。500Ω以外は、電流 制限はありません (Fig.7)。

2) 3pin (CW/CCW入力)

 $R_1(10k\Omega)$ は、 $\pm 30\%$ のバラツキをもっています (Fig.8)。

3) 4, 5, 6pin (ホール入力)

NPNトランジスタのベースが端子に出ています。コント ロール電流の1/70の電流(最大)が流れます(これは電圧に は影響されない。バラツキは1/70~1/400です)。ただし、 4-6pin, 5-6pin間は差動になっているため、トランジスタ のオフ期間は電流が流れません。また6pinは、COMになっ ているため、4,5pinの2倍の電流が流れます(Fig.7)。

● 応用ボードパターン図 (BA6301/BA6411)

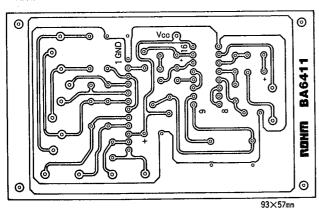


Fig.9 (銅箔面)

● 電気的特性曲線/Electrical Characteristic Curves

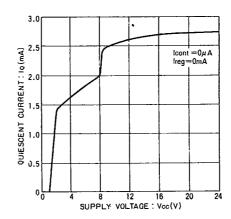


Fig.11 無信号時電流一電源電圧特性

● 応用ボード部品配置図 (BA6301/BA6411)

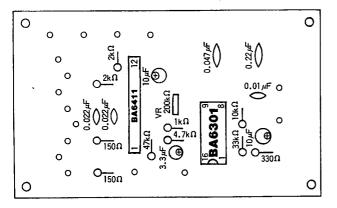


Fig.10 (部品面)

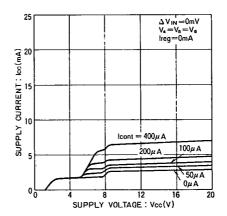


Fig.12 回路電流-電源電圧特性

REGULATED VOLTAGE: Vreg(V)

Fig.14 定電圧—負荷電流特性

LOAD CURRENT : Ireg (mA)

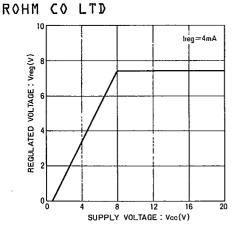


Fig.13 定電圧一電源電圧特性

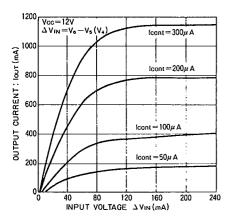


Fig.15 出力電流一入力電圧特性

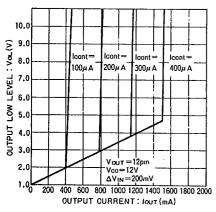


Fig.17 出力ローレベル―出力電流特性

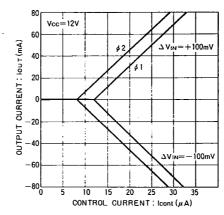


Fig.16 出力電流-コントロール電流特性

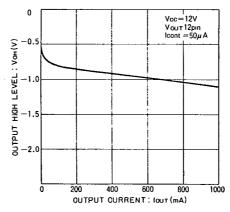


Fig.18 出力ハイレベル―出力電流特性

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.