
BYV26F

SINTERED GLASS JUNCTION FAST AVALANCHE RECTIFIER E: 1200V CURRENT: 1.05A

VOLTAGE: 1200V

FEATURE Glass passivated High maximum operating temperature Low leakage current Excellent stability Guaranteed avalanche energy absorption capability

MECHANICAL DATA

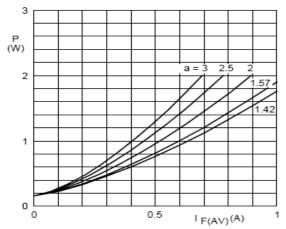
Case: SOD-57 sintered glass case Terminal: Plated axial leads solderable per MIL-STD 202E, method 208C Polarity: color band denotes cathode end Mounting position: any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

(single-phase, half-wave, 60HZ, resistive or inductive load rating at 25°C, unless otherwise stated)

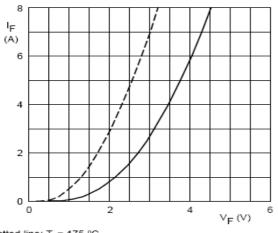
	SYMBOL	BYV26F	units
Maximum Recurrent Peak Reverse Voltage	V _{RRM}	1200	V
Maximum RMS Voltage	V _{RMS}	910	V
Maximum DC blocking Voltage	V _{DC}	1200	V
Reverse avalanche breakdown voltage IR = 0.1 mA	V _{(BR)R}	1300min	V
Maximum Average Forward Rectified Current 3/8"lead length at Ttp =85°C	IFAV	1.05	A
Non-repetitive Peak Forward Current at t=10ms half sine wave	IFSM	30	A
Maximum Forward Voltage at 1.0A	VF	2.15	V
Non-repetitive peak reverse avalanche energy (Note 1)	E _{RSM}	10	mJ
Maximum DC Reverse Current $Ta = 25^{\circ}C$ at rated DC blocking voltage $Ta = 165^{\circ}C$	I _R	5.0 150.0	μΑ μΑ
Maximum Reverse Recovery Time (Note 2)	Trr	150	nS
Diode Capacitance (Note 3)	C _d	35	pF
Typical Thermal Resistance (Note 4)	R _{th(ja)}	100	K/W
Storage and Operating Junction Temperature	Tstg, Tj	-65 to +175	°C

Note:


1. I_R=400mA; Tj=Tjmax prior to surge; inductive load switched off

2. Reverse Recovery Condition If =0.5A, Ir =1.0A, Irr =0.25A

3. Measured at 1.0 MHz and applied reverse voltage of $\,$ 0Vdc $\,$


4. Device mounted on an epoxy-glass printed-circuit board, 1.5mm thick

RATINGS AND CHARACTERISTIC CURVES BYV26F

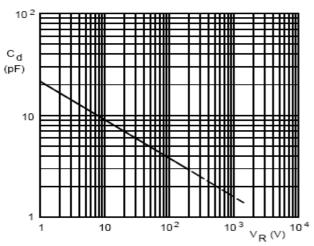
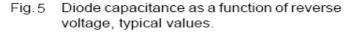

 $a = I_{F(RMS)}/I_{F(AV)}; \ \forall_R = \forall_{RRMmax}; \ \delta = 0.5.$

Fig.1 Maximum steady state power dissipation (forward plus leakage current losses, excluding switching losses) as a function of average forward current.



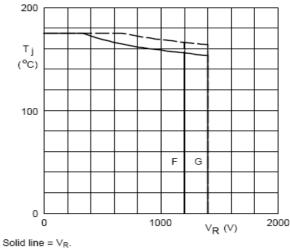

Dotted line: $T_j = 175 \text{ °C}$. Solid line: $T_j = 25 \text{ °C}$.

Fig. 3 Forward current as a function of forward voltage; maximum values.

f = 1 MHz; T_j = 25 °C.

Dotted line = V_{RRM} ; δ = 0.5.

Fig. 2 Maximum permissible junction temperature as a function of reverse voltage.

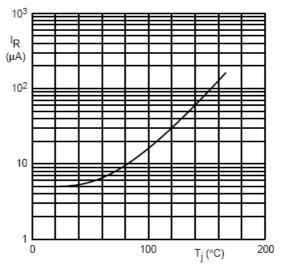


Fig.4 Reverse current as a function of junction temperature; maximum values.