MORNSUN[®]

A_S-2W & B_S-2W Series 2W, FIXED INPUT, ISOLATED & UNREGULATED DUAL/SINGLE OUTPUT DC-DC CONVERTER

MODEL SELECTION

A0505S-2W

PRODUCT FEATURES

- High efficiency up to 86%
- 1KVDC Isolation
- SIP package
- High Power Density
- Internal SMD construction
- Temperature range: -40°C ~ +85°C
- No heat sink required
- No external component required
- Industry standard pinout
- RoHS Compliance

APPLICATIONS

The A_S-2W & B_S-2W Series are specially designed for applications where a group of polar power supplies are isolated from the input power supply in a distributed power supply system on a circuit board.

These products apply to:

- 1) Where the voltage of the input power supply is fixed (voltage variation $\leq \pm 10\%$);
- 2) Where isolation is necessary between input and output (isolation voltage ≤ 1000 VDC);
- 3) Where the regulation of the output voltage and the output ripple noise are not demanding.

Such as: purely digital circuits, ordinary low frequency analog circuits, and IGBT power device driving circuits.

	Input				Input (Current	Reflected			
lodel Number	Voltage(VDC)	Voltage	Output Cu		(mA) @Max.		Ripple	Max. Capacitive	Efficiency (%, typ.)	Approval
	(Range)	(VDC)	Max.	Min.	Load	Load	(mA,typ.)	Load(µF)	@Max. Load	
B0303S-2W	3.3(2.97-3.63)	3.3	400	40		-	-	220	73	
B0305S-2W	3.3(2.97-3.63)	5	400	40	749	46	32	220	78	
A0505S-2W		±5	±200	±20	491	33	30		82	UL
A0509S-2W		±9	±111	±12	466	36	22		85	UL
A0512S-2W		±12	±83	±9	464	34	26	100	86	UL
A0515S-2W		±15	±67	±7	459	19	33	-	82	UL
A0524S-2W		±24	±42	±5	453	25	49		84	
B0503S-2W	5 (4.5-5.5)	3.3	400	40	355	35	43	_	74	
B0505S-2W	(1.0 0.0)	5	400	40	490	44	44		81	UL CE
B0509S-2W		9	222	23	467	33	19	220	84	UL CE
B0512S-2W		12	167	17	463	33	20	220	83	UL CE
B0515S-2W		15	133	14	466	33	20	-	84	UL CE
B0524S-2W		24	84	10	465	34	59		82	
A1205S-2W		±5	±200	±20	198	18	23		81	UL
A1209S-2W		±9	±111	±12	191	17	30		84	UL
A1212S-2W		±12	±83	±9	188	16	20	100	86	UL
A1215S-2W		±15	±67	±7	197	20	21		82	UL
A1224S-2W	12 (10.8-13.2)	±24	±42	±5	186	12	19]	84	
B1205S-2W		5	400	40	204	16	31		81	UL CE
B1209S-2W		9	222	23	202	24	28	220	82	UL CE
B1212S-2W		12	167	17	190	16	22	220	85	UL CE
B1215S-2W	1	15	133	14	196	19	16		82	UL CE

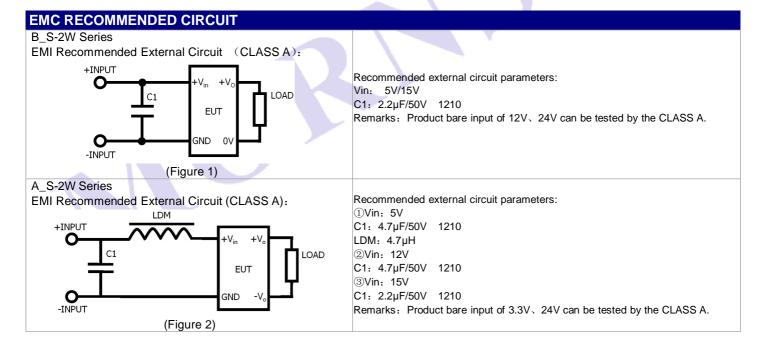
Model Number	Input Voltage(VDC)	Output Voltage	Output Cu	rrent (mA)	Input C (mA)		Reflected Ripple	Max. Capacitive	Efficiency (%, typ.)	Approval
	Nominal (Range)	(VDC)	Max.	Min.	@Max. Load	@No Load	Current (mA,typ.)	Load(µF)	@Max. Load	Approvai
B1224S-2W	12(10.8-13.2)	24	84	10	189	15	13	220	84	
A1505S-2W		±5	±200	±20	160	15	32	400	80	
A1515S-2W	15	±15	±67	±7	152	14	17	100	82	
B1505S-2W	(13.5-16.5)	5	400	40	159	14	30	000	80	
B1515S-2W		15	133	14	157	15	20	220	80	
A2405S-2W	_	±5	±200	±20	100	9	42		80	UL
A2409S-2W		±9	±111	±12	98	9	22		84	UL
A2412S-2W	-	±12	±83	±9	93	7	17	100	84	UL
A2415S-2W	-	±15	±67	±7	98	9	17	-	84	UL
A2424S-2W	-	±24	±42	±5	99	10	41		85	
B2403S-2W	24 (21.6-26.4)	3.3	400	40	55	7	26		76	
B2405S-2W		5	400	40	102	8	21		80	UL CE
B2409S-2W		9	222	23	98	8	28		83	UL CE
B2412S-2W		12	167	17	95	7	19	220	84	UL CE
B2415S-2W		15	133	14	95	7	27		84	UL CE
B2424S-2W	1	24	84	10	96	9	21		84	

Note: Models listed with strike-through text have been officially discontinued. The A_S_1W/B_LS_1W series also are available in our company.

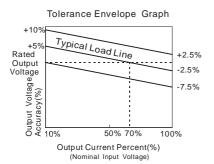
Item	Test Conditions	Min.	Тур.	Max.	Units
	3.3VDC Input Models	-0.7		5	
Input Surge Voltage (1sec. max.)	5VDC Input Models	-0.7		9	
	12VDC Input Models	-0.7		18	VDC
	15VDC Input Models	-0.7		21	
	24VDC Input Models	-0.7		30	
Reverse Polarity Input Current*				0.4	A
Input Filter			CF	ilter	

UTDUT ODEOLEICATION

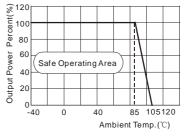
Item	Test Conditions		Min.	Тур.	Max.	Units	
Output Power			0.2		2	W	
Output Voltage Accuracy			See tolerance envelope graph				
Output Voltage Balance	Dual Output, Balanced	l Loads		±0.5	±1.0		
Line Regulation	For Vin change of ±1%				±1.2		
	10% to 100% load	3.3V output		15	20	- %	
		5V output		12.8	15		
		9V output		8.3	15		
Load Regulation		12V output		6.8	15		
		15V output		6.3	15		
		24V output		5	15		
Temperature Drift	100% full load	1			±0.03	%/°C	
Ripple & Noise*	20MHz Bandwidth			75	150	mVp-p	
Short Circuit Protection**					1	S	

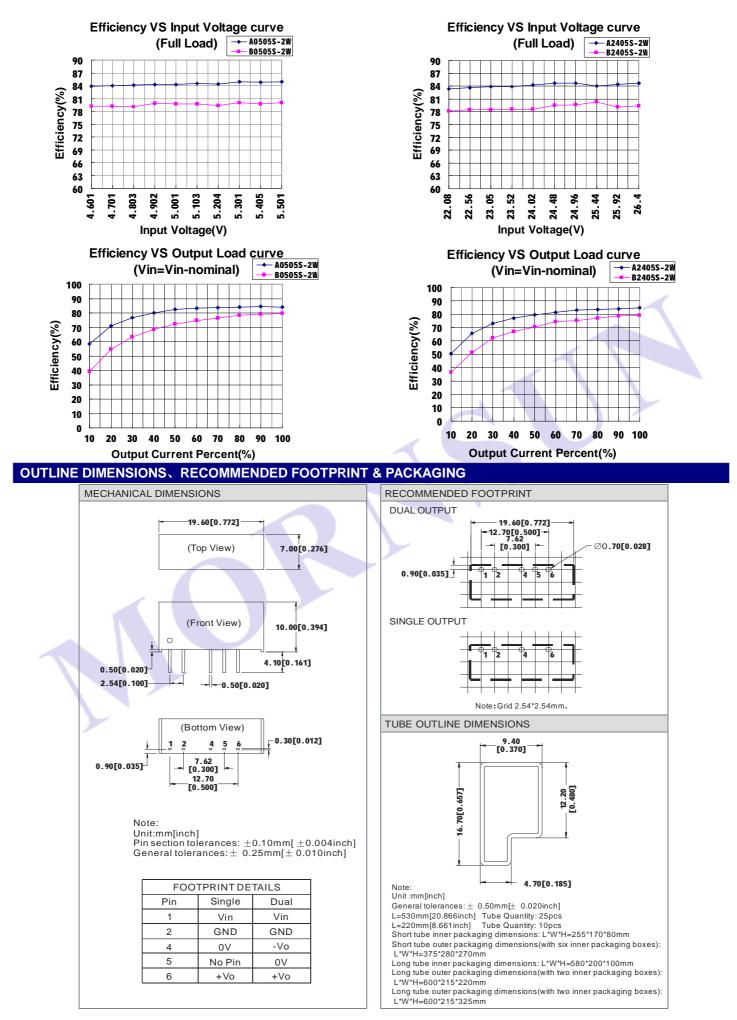

Note: Dual output models unbalanced load: ±5%.

*Test ripple and noise by "parallel cable" method. See detailed operation instructions at Testing of Power Converter section, application notes. **Supply voltage must be discontinued at the end of short circuit duration.

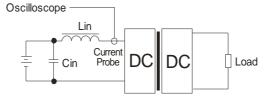

Item	Test Conditions		Min.	Тур.	Max.	Units
Isolation Voltage	Tested for 1 mir	Tested for 1 minute and 1mA max				VDC
Isolation Resistance	Test at 500VDC	Test at 500VDC				MΩ
Isolation Capacitance	Input/Output, 100KHz/1V	24VDC Input/Output Models		100		pF
		Other Models		30		
Switching Frequency	Full load, nomir	nal input		75		KHz
MTBF	MIL-HDBK-217	F@25℃	3500			K hours
Case Material	al			Epoxy Resi	n (UL94-V0)	
Weight				2.8		g

ENVIRONMENTAL SP	PECIFICATIONS				
Item	Test Conditions	Min.	Тур.	Max.	Units
Storage Humidity				95	%
Operating Temperature	Power derating (above 85°C)	-40		85	
Storage Temperature		-55		125	°c
Temp. rise at full load			25		U
Lead Temperature	1.5mm from case for 10 seconds			300	
Cooling			Free air o	convection	


EMC SPECIFICATIONS			
EMI	CE	CISPR22/EN55022	CLASS A (External Circuit Refer to Figure1、2)
EMS	ESD	IEC/EN61000-4-2	Contact ±8KV perf. Criteria B


PRODUCT TYPICAL CURVE

Temperature Derating Graph


The copyright and authority for the interpretation of the products are reserved by MORNSUN

TEST CONFIGURATIONS

Input Reflected-Ripple Current Test Setup

Input reflected-ripple current is measured with a inductor Lin and Cin to simulate source impedance.

Lin(4.7µH) Cin(220µF, ESR < 1.0Ω at 100 KHz)

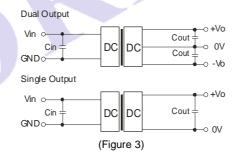
DESIGN & APPLY CONSIDERATIONS

1) Requirement on output load

To ensure this module can operate efficiently and reliably, During operation, the minimum output load *could not be less than 10% of the full load.* If the actual output power is very small, please connect a resistor with proper resistance at the output end in parallel to increase the load, or use our company's products with a lower rated output power (A_S-1W / B_LS-1W Series).

2) Overload Protection

Under normal operating conditions, the output circuit of these products has no protection against overload. The simplest method is to connect a self-recovery fuse in series at the input end or add a circuit breaker to the circuit.

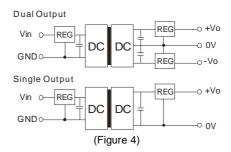

Input Fuse Selection Guide

3.3VDC Input Models	500mA slow-Blow Type	15VDC Input Models	100mA slow-Blow Type
5VDC Input Models	500mA slow-Blow Type	24VDC Input Models	100mA slow-Blow Type
12VDC Input Models	200mA slow-Blow Type		

3) Recommended circuit

If you want to further decrease the input/output ripple, an capacitor filtering network may be connected to the input and output ends of the DC/DC converter, see (Figure 3).

It should also be noted that the capacitance of filter capacitor must be proper. If the capacitance is too big, a startup problem might arise. For every channel of output, provided the safe and reliable operation is ensured, the recommended capacitance of its filter capacitor sees (Table 1).


E/(1									
Vin	Cin	Single Vout	Cout	Dual	Cout				
(VDC)	(µF)	(VDC)	(µF)	Vout	(µF)				
				(VDC)					
3.3/5	4.7	3.3/5	10	±5	4.7				
12	2.2	9	4.7	±9	2.2				
15	2.2	12	2.2	±12	1				
24	1	15	1	±15	0.47				
		24	1	±24	0.47				

EXTERNAL CAPACITOR TABLE (TABLE 1)

It's not recommended to connect any external capacitor in the application field with less than 0.5 watt output.

4) Output Voltage Regulation and Over-voltage Protection Circuit

The simplest device for output voltage regulation, over-voltage and over-current protection is a linear regulator and an capacitor filtering network with overheat protection that is connected to the input or output end in series (Figure 4), the recommended capacitance of its filter capacitor sees (Table 1), linear regulator based on the actual voltage and current to reasonable selection.

5) No parallel connection or plug and play

Note:

- 1. Operation under minimum load will not damage the converter; However, they may not meet all specification listed, and that will reduce the life of product.
- 2. All specifications measured at Ta=25°C, humidity<75%, nominal input voltage and rated output load unless otherwise specified.
- 3. In this datasheet, all the test methods of indications are based on corporate standards.
- 4. Only typical models listed, other models may be different, please contact our technical person for more details.
- 5. Our company offer custom products.
- 6. Specifications subject to change without notice.

MORNSUN Science & Technology Co.,Ltd.

Address: No. 5, Kehui St. 1, Kehui development center, Science Ave., Guangzhou Science City, Luogang district, Guangzhou, P.R.China. Tel: 86-20-28203030 Fax:86-20-28203068

Http://www.mornsun-power.com