Designer's Data Sheet SWITCHMODE ${ }^{\text {M }}$

NPN Bipolar Power Transistor For Switching Power Supply Applications

The MJE/MJF13007 is designed for high-voltage, high-speed power switching inductive circuits where fall time is critical. It is particularly suited for 115 and 220 V switchmode applications such as Switching Regulators, Inverters, Motor Controls, Solenoid/Relay drivers and Deflection circuits.

- $V_{\text {CEO }}$ (sus) 400 V
- Reverse Bias SOA with Inductive Loads @ $\mathrm{T} \mathrm{C}=100^{\circ} \mathrm{C}$
- 700 V Blocking Capability
- SOA and Switching Applications Information
- Two Package Choices: Standard TO-220 or Isolated TO-220
- MJF13007 is UL Recognized to 3500 VRMS, File \#E69369

MAXIMUM RATINGS

Rating	Symbol	MJE13007	MJF13007	Unit
Collector-Emitter Sustaining Voltage	$\mathrm{V}_{\text {CEO }}$	400		Vdc
Collector-Emitter Breakdown Voltage	$\mathrm{V}_{\text {CES }}$	700		Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	9.0		Vdc
$\begin{aligned} \text { Collector Current } & \text { - Continuous } \\ & \text { Peak (1) } \end{aligned}$	$\begin{gathered} \text { IC } \\ \text { ICM } \end{gathered}$	$\begin{aligned} & 8.0 \\ & 16 \end{aligned}$		Adc
Base Current - Continuous - Peak (1)	$\begin{gathered} \text { IB } \\ \text { IBM } \end{gathered}$	$\begin{aligned} & 4.0 \\ & 8.0 \end{aligned}$		Adc
	$\begin{gathered} \text { IE } \\ \mathrm{I}_{\mathrm{EM}} \end{gathered}$	$\begin{aligned} & 12 \\ & 24 \end{aligned}$		Adc
RMS Isolation Voltage (for 1 sec, R.H. $<30 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) Test No. 1 Per Fig. 15 Test No. 2 Per Fig. 16 Test No. 3 Per Fig. 17 Proper strike and creepage distance must be provided	VISOL	-	$\begin{aligned} & 4500 \\ & 3500 \\ & 1500 \end{aligned}$	V
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{gathered} 80 \\ 0.64 \end{gathered}$	$\begin{gathered} 40^{*} \\ 0.32 \end{gathered}$	Watts W/ ${ }^{\circ} \mathrm{C}$
Operating and Storage Temperature	$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$	-65	150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Thermal Resistance - Junction to Case - Junction to Ambient	$\mathrm{R}_{\theta \mathrm{JC}}$ $\mathrm{R}_{\theta \mathrm{JA}}$	1.56 62.5	3.12 62.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Lead Temperature for Soldering Purposes: $1 / 8^{\prime \prime}$ from Case for 5 Seconds	T_{L}	260		${ }^{\circ} \mathrm{C}$

[^0]Designer's Data for "Worst Case" Conditions - The Designer's Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit curves - representing boundaries on device characteristics - are given to facilitate "worst case" design.
Designer's and SWITCHMODE are trademarks of Motorola, Inc.

ELECTRICAL CHARACTERISTICS $\left(T_{C}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
*OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage $\left(I_{C}=10 m A, I_{B}=0\right)$	$\mathrm{V}_{\text {CEO }}$ (sus)	400	-	-	Vdc
Collector Cutoff Current ($\mathrm{V}_{\mathrm{CES}}=700 \mathrm{Vdc}$) $\left(\mathrm{V}_{\text {CES }}=700 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right)$	ICES	-	-	$\begin{aligned} & 0.1 \\ & 1.0 \end{aligned}$	mAdc
Emitter Cutoff Current ($\mathrm{V}_{\mathrm{EB}}=9.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0$)	IEBO	-	-	100	$\mu \mathrm{Adc}$

SECOND BREAKDOWN

Second Breakdown Collector Current with Base Forward Biased	$I_{S / b}$	See Figure 6
Clamped Inductive SOA with Base Reverse Biased	-	See Figure 7

*ON CHARACTERISTICS

$\begin{aligned} & \text { DC Current Gain } \\ & \text { (IC }=2.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc} \text {) } \\ & \left(\mathrm{IC}=5.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right) \end{aligned}$	$h_{\text {he }}$	$\begin{aligned} & 8.0 \\ & 5.0 \end{aligned}$	-	$\begin{aligned} & 40 \\ & 30 \end{aligned}$	-
$\begin{aligned} & \text { Collector-Emitter Saturation Voltage } \\ & \text { (IC } \left.=2.0 \mathrm{Adc}, I_{\mathrm{B}}=0.4 \mathrm{Adc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=5.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=1.0 \mathrm{Adc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=8.0 \mathrm{Adc} \mathrm{I}_{\mathrm{B}}=2.0 \mathrm{Adc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=5.0 \mathrm{Adc}, I_{\mathrm{B}}=1.0 \mathrm{Adc}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right) \end{aligned}$	$\mathrm{V}_{\text {CE }}$ (sat)	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	-	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	Vdc
$\begin{aligned} & \text { Base-Emitter Saturation Voltage } \\ & \quad\left(I_{C}=2.0 \mathrm{Adc}, I_{\mathrm{B}}=0.4 \mathrm{Adc}\right) \\ & \left(I_{C}=5.0 \mathrm{Adc}, I_{B}=1.0 \mathrm{Adc}\right) \\ & \left(I_{C}=5.0 \mathrm{Adc}, I_{B}=1.0 \mathrm{Adc}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right) \end{aligned}$	V_{BE} (sat)	-	-	$\begin{aligned} & 1.2 \\ & 1.6 \\ & 1.5 \end{aligned}$	Vdc

DYNAMIC CHARACTERISTICS

Current-Gain — Bandwidth Product $\left(\mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	f_{T}	4.0	14	-	MHz
Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=10\right.$ Vdc, $\left.\mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=0.1 \mathrm{MHz}\right)$	C_{ob}	-	80	-	pF
Collector to Heatsink Capacitance, MJF13007	$\mathrm{C}_{\mathrm{C}-\mathrm{hs}}$	-	3.0	-	pF

SWITCHING CHARACTERISTICS

Resistive Load (Table 1)							
Delay Time	$\begin{aligned} & \left(\mathrm{V}_{\mathrm{CC}}=125 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~A},\right. \\ & \mathrm{I}_{1}=\mathrm{I}_{\mathrm{B} 2}=1.0 \mathrm{~A}, \mathrm{tp}_{\mathrm{p}}=25 \mu \mathrm{~s}, \\ & \text { Duty Cycle } \leq 1.0 \%) \end{aligned}$		t_{d}	-	0.025	0.1	$\mu \mathrm{s}$
Rise Time			t_{r}	-	0.5	1.5	
Storage Time			$\mathrm{t}_{\text {s }}$	-	1.8	3.0	
Fall Time			t_{f}	-	0.23	0.7	
Inductive Load, Clamped (Table 1)							
Voltage Storage Time	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=15 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~A} \\ & \mathrm{~V}_{\text {clamp }}=300 \mathrm{Vdc} \\ & \mathrm{I}_{\mathrm{B}}(\mathrm{on})=1.0 \mathrm{~A}, \mathrm{I}_{\mathrm{B}(\mathrm{off})}=2.5 \mathrm{~A} \\ & \mathrm{~L}_{\mathrm{C}}=200 \mu \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}} \mathrm{C}=100^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\text {sv }}$		$\begin{aligned} & 1.2 \\ & 1.6 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \end{aligned}$	$\mu \mathrm{S}$
Crossover Time			t_{c}		$\begin{aligned} & \hline 0.15 \\ & 0.21 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.50 \end{aligned}$	$\mu \mathrm{s}$
Fall Time			t_{fi}	-	$\begin{aligned} & \hline 0.04 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.12 \\ & 0.20 \end{aligned}$	$\mu \mathrm{s}$

* Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$.

Figure 1. Base-Emitter Saturation Voltage

Figure 2. Collector-Emitter Saturation Voltage

Figure 3. Collector Saturation Region

Figure 4. DC Current Gain

Figure 5. Capacitance

Figure 6. Maximum Forward Bias Safe Operating Area

Figure 8. Forward Bias Power Derating

Figure 7. Maximum Reverse Bias Switching Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $\mathrm{I}_{\mathrm{C}}-\mathrm{V}_{\mathrm{CE}}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.
The data of Figure 6 is based on $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$; $\mathrm{TJ}_{(\mathrm{pk})}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $\mathrm{T}^{\mathrm{C}} \geq 25^{\circ} \mathrm{C}$. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 6 may be found at any case temperature by using the appropriate curve on Figure 8.
At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

Use of reverse biased safe operating area data (Figure 7) is discussed in the applications information section.

Figure 9. Typical Thermal Response for MJE13007

Figure 10. Typical Thermal Response for MJF13007

SPECIFICATION INFORMATION FOR SWITCHMODE APPLICATIONS

INTRODUCTION

The primary considerations when selecting a power transistor for SWITCHMODE applications are voltage and current ratings, switching speed, and energy handling capability. In this section, these specifications will be discussed and related to the circuit examples illustrated in Table 2.(1)

VOLTAGE REQUIREMENTS

Both blocking voltage and sustaining voltage are important in SWITCHMODE applications.

Circuits B and C in Table 2 illustrate applications that require high blocking voltage capability. In both circuits the switching transistor is subjected to voltages substantially higher than V_{CC} after the device is completely off (see load line diagrams at $\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\text {leakage }} \approx 0$ in Table 2). The blocking capability at this point depends on the base to emitter conditions and the device junction temperature. Since the highest device capability occurs when the base to emitter junction is reverse biased ($\mathrm{V}_{\mathrm{CEV}}$), this is the recommended and specified use condition. Maximum ICEV at rated $V_{\text {CEV }}$ is specified at a relatively low reverse bias (1.5 Volts) both at
$25^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$. Increasing the reverse bias will give some improvement in device blocking capability.

The sustaining or active region voltage requirements in switching applications occur during turn-on and turn-off. If the load contains a significant capacitive component, high current and voltage can exist simultaneously during turn-on and the pulsed forward bias SOA curves (Figure 6) are the proper design limits.

For inductive loads, high voltage and current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as a Reverse Bias Safe Operating Area (Figure 7) which represents voltage-current conditions that can be sustained during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode.
(1) For detailed information on specific switching applications, see Motorola Application Note AN719, AN873, AN875, AN951.

Table 1. Test Conditions For Dynamic Performance

VOLTAGE REQUIREMENTS (continued)

In the four application examples (Table 2) load lines are shown in relation to the pulsed forward and reverse biased SOA curves.

In circuits A and D, inductive reactance is clamped by the diodes shown. In circuits B and C the voltage is clamped by the output rectifiers, however, the voltage induced in the primary leakage inductance is not clamped by these diodes and could be large enough to destroy the device. A snubber network or an additional clamp may be required to keep the turn-off load line within the Reverse Bias SOA curve.

Load lines that fall within the pulsed forward biased SOA curve during turn-on and within the reverse bias SOA curve during turn-off are considered safe, with the following assumptions:
(1) The device thermal limitations are not exceeded.
(2) The turn-on time does not exceed $10 \mu \mathrm{~s}$ (see standard pulsed forward SOA curves in Figure 6).
(3) The base drive conditions are within the specified limits shown on the Reverse Bias SOA curve (Figure 7).

CURRENT REQUIREMENTS

An efficient switching transistor must operate at the required current level with good fall time, high energy handling
capability and low saturation voltage. On this data sheet, these parameters have been specified at 5.0 amperes which represents typical design conditions for these devices. The current drive requirements are usually dictated by the $V_{C E}$ (sat) specification because the maximum saturation voltage is specified at a forced gain condition which must be duplicated or exceeded in the application to control the saturation voltage.

SWITCHING REQUIREMENTS

In many switching applications, a major portion of the transistor power dissipation occurs during the fall time ($\mathrm{tfi}_{\mathrm{f}}$). For this reason considerable effort is usually devoted to reducing the fall time. The recommended way to accomplish this is to reverse bias the base-emitter junction during turnoff. The reverse biased switching characteristics for inductive loads are shown in Figures 13 and 14 and resistive loads in Figures 11 and 12. Usually the inductive load components will be the dominant factor in SWITCHMODE applications and the inductive switching data will more closely represent the device performance in actual application. The inductive switching characteristics are derived from the same circuit used to specify the reverse biased SOA curves, (see Table 1) providing correlation between test procedures and actual use conditions.

SWITCHING TIME NOTES

In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and any coil driver, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined.

```
tsv = Voltage Storage Time, 90% IB1 to 10% Vclamp
trv = Voltage Rise Time, 10-90% V Vlamp
tfi = Current Fall Time, 90-10% IC
tti = Current Tail, 10-2% IC
t
```

An enlarged portion of the turn-off waveforms is shown in Figure 13 to aid in the visual identity of these terms. For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN222A:

$$
P_{S W T}=1 / 2 V_{C C} C_{C}\left(t_{C}\right) f
$$

Typical inductive switching times are shown in Figure 14. In general, $\mathrm{t}_{\mathrm{rv}}+\mathrm{t}_{\mathrm{fi}} \cong \mathrm{t}_{\mathrm{c}}$. However, at lower test currents this relationship may not be valid.

As is common with most switching transistors, resistive switching is specified at $25^{\circ} \mathrm{C}$ and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a "SWITCHMODE" transistor are the inductive switching speeds (t_{C} and t_{sv}) which are guaranteed at $100^{\circ} \mathrm{C}$.

SWITCHING PERFORMANCE

Figure 11. Turn-On Time (Resistive Load)

TIME

Figure 13. Inductive Switching Measurements

Figure 12. Turn-Off Time (Resistive Load)

Figure 14. Typical Inductive Switching Times

Table 2. Applications Examples of Switching Circuits

CIRCUIT	LOAD LINE DIAGRAMS	TIME DIAGRAMS
SERIES SWITCHING REGULATOR	Notes: (1) See AN569 for Pulse Power Derating Procedure.	
FLYBACK INVERTER	Notes: See AN569 for Pulse Power Derating Procedure.	
PUSH-PULL INVERTER/CONVERTER	 Notes: (1) See AN569 for Pulse Power Derating Procedure.	
SOLENOID DRIVER	Notes: (1) See AN569 for Pulse Power Derating Procedure.	

TEST CONDITIONS FOR ISOLATION TESTS*

MOUNTING INFORMATION

Figure 18. Typical Mounting Techniques for Isolated Package

Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting technique, a screw torque of 6 to 8 in • Ibs is sufficient to provide maximum power dissipation capability. The compression washer helps to maintain a constant pressure on the package over time and during large temperature excursions.
Destructive laboratory tests show that using a hex head 4-40 screw, without washers, and applying a torque in excess of $20 \mathrm{in} \cdot \mathrm{lbs}$ will cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.
Additional tests on slotted 4-40 screws indicate that the screw slot fails between 15 to $20 \mathrm{in} \cdot \mathrm{lbs}$ without adversely affecting the package. However, in order to positively ensure the package integrity of the fully isolated device, Motorola does not recommend exceeding 10 in • Ibs of mounting torque under any mounting conditions.
** For more information about mounting power semiconductors see Application Note AN1040.

[^1]
PACKAGE DIMENSIONS

How to reach us:
USA / EUROPE: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki,
6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

[^0]: (1) Pulse Test: Pulse Width $=5.0 \mathrm{~ms}$, Duty Cycle $\leq 10 \%$.
 *Measurement made with thermocouple contacting the bottom insulated mountign surface of the package (in a location beneath the die), the device mounted on a heatsink with thermal grease applied at a mounting torque of 6 to $8 \bullet \mathrm{lbs}$.

[^1]: Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and , 山l are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

