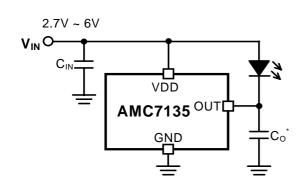


350mA ADVANCED CURRENT REGULATOR

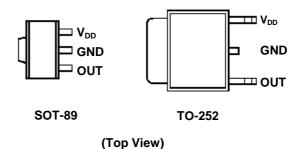
DESCRIPTION


The AMC7135 is a low dropout current regulator rated for 350mA constant sink current. The low quiescent current and low dropout voltage are achieved by advanced Bi-CMOS process.

FEATURES

- 350mA constant sink current.
- Output short / open circuit protection.
- Low dropout voltage.
- **■** Low quiescent current
- Supply voltage range 2.7V ~ 6V
- 2KV HBM ESD protection
- Advanced Bi-CMOS process.
- SOT-89 and TO-252 package

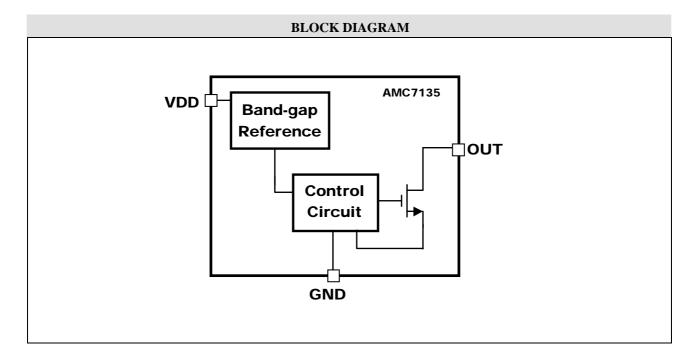
TYPICAL APPLICATION CIRCUIT


APPLICATIONS

* Co is strongly recommended.

- Power LED driver
- Cap Lamp
- Refrigerator Lighting

PACKAGE PIN OUT


ORDER INFORMATION								
I_{OUT}	PK	SOT-89	SJ	TO-252				
	110	3-pin	NJ NJ	3-pin				
340-380mA		AMC7135PKF		AMC7135SJF				
300-340mA		AMC7135PKFA		AMC7135SJFA				

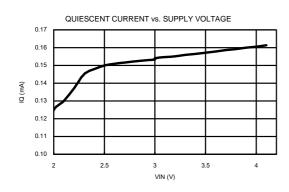
Note: 1. All surface-mount packages are available in Tape & Reel. Append the letter "T" to part number (i.e. AMC7135PKFAT).

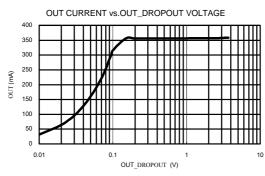
- 2. The letter "F" is marked for Lead Free process.
- 3. The letter "A" is marked for current ranking.

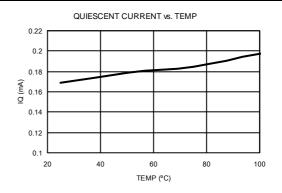
ABSOLUTE MAXIMUM RATINGS (Note)						
Input Voltage, V _{DD}	-0.3V to 7V					
Output Voltage, V _{OUT}	-0.3V to 7V					
Maximum Junction Temperature, T _J	150°C					
Storage Temperature Range	-40°C to 150°C					
Lead Temperature (Soldering, 10 seconds)	260°C					
Note: Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of the specified terminal.						

PIN DESCRIPTION					
Pin Name	Pin Name Pin Function				
V _{DD} Power supply.					
OUT Output pins. Connected to load.					
GND	GND Ground.				

RECOMMENDED OPERATING CONDITIONS								
Parameter	Symbol	Min	Тур	Max	Unit			
Supply Voltage	$V_{ m DD}$	2.7		6	V			
Output Sink Current	I_{OUT}			400	mA			
Operating Free-air Temperature Range	$T_{\mathbf{A}}$	-40		+85	$^{\circ}\!\mathbb{C}$			

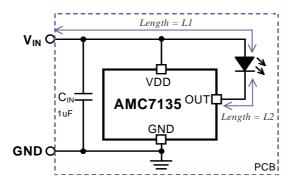

DC ELECTRICAL CHARACTERISTICS

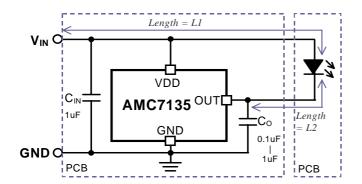

 V_{DD} =3.7V, T_A =25°C, No Load, (Unless otherwise noted)

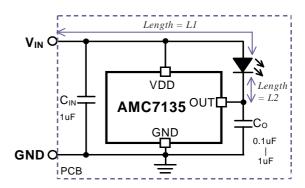

· bb · · · · · · · · · · · · · · · · ·	(
Parameter	Symbol	Condition	Min	Тур	Max	Unit	Apply Pin
0 + +6:10	T	V _{OUT} =0.2V	340 360	360	380	mA	
Output Sink Current	I _{SINK}	V _{OUT} =0.2V, Rank A	300	320	340	mA	
Load Regulation		V_{OUT} =0.2V to 3V			3	mA/V	OUT
Line Regulation		V_{DD} = 3V to 6V, V_{OUT} =0.2V			3	mA/V	001
Output Dropout Voltage	V _{OUTL}			120		mV	
Supply Current Consumption	I_{DD}			200		uA	VDD

Note 1: Output dropout voltage: 90% x I_{OUT} @ V_{OUT} =200mV

TYPICAL OPERATION CHRACTERISTICS




APPLICATION INFORMATION


Output Capacitor Co and PCB layout:

The output capacitor C_O may be removed under certain condition. Please refer to the following figure. If LED and AMC7135 is located in the same PCB, and the length of the routing path L1<10cm & L2<3cm, the output capacitor C_O can be neglected.

If LED and AMC7135 is located in separate PCBs, or the length of the routing path L1>10cm or L2>3cm, the output capacitor C_0 should be added. Typically, capacitance of $0.1 uF \sim 1 uF$ is recommended and 1 uF is needed when L2 is much longer than 3cm.

The Maximum Power Dissipation on Regulator:

$$P_{D(MAX)} = V_{OUT(MAX)} \times I_{OUT(NOM)} + V_{IN(MAX)} \times I_{Q}$$

 $V_{OUT(MAX)}$ = the maximum voltage on output pin;

 $I_{OUT(NOM)}$ = the nominal output current;

 I_O = the quiescent current the regulator consumes at $I_{OUT(MAX)}$;

 $V_{IN(MAX)}$ = the maximum input voltage.

Thermal Consideration:

The maximum junction temperature ratings of AMC7135 should not be exceeded under continuous normal load conditions. When power consumption is over about 700mW (SOT-89 package, at T_A =70°C) or 1000mW (TO-252 package, at T_A =70°C), additional heat sink is required to control the junction temperature below 120°C.

The junction temperature is:

$$T_J = P_D (\theta_{JT} + \theta_{CS} + \theta_{SA}) + T_A$$

P_D: Dissipated power.

 θ _{JT}; Thermal resistance from the junction to the mounting tab of the package.

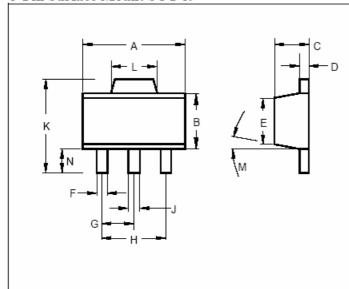
For SOT-89 package, θ_{JT} = 35.0 °C /W. For TO-252 package, θ_{JT} = 7.0 °C /W.

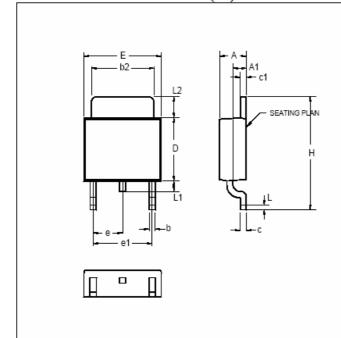
 θ_{CS} : Thermal resistance through the interface between the IC and the surface on which it is mounted. (typically, $\theta_{CS} < 1.0^{\circ}\text{C/W}$)

 θ _{SA}: Thermal resistance from the mounting surface to ambient (thermal resistance of the heat sink).

If PC Board copper is going to be used as a heat sink, below table can be used to determine the appropriate size of copper foil required. For multi-layered PCB, these layers can also be used as a heat sink. They can be connected with several through-hole vias.

PCB θ sa (°C/W)	59	45	38	33	27	24	21
PCB heat sink size (mm ²)	500	1000	1500	2000	3000	4000	5000


Recommended figure of PCB area used as a heat sink.


PACKAGE

3-Pin Surface Mount SOT-89

	ı	NCHES	3	MILLIMETERS			
	MIN	TYP	MAX	MIN	TYP	MAX	
Α	0.173	1	0.181	4.39	-	4.59	
В	0.090	1	0.102	2.28	-	2.59	
С	0.055	1	0.063	1.39	-	1.60	
D	0.015	1	0.017	0.38	1	0.43	
Ε	0.084	-	0.090	2.13	-	2.28	
F	0.016	1	0.019	0.33	-	0.48	
G	0.	059 BS	C	1.49 BSC			
Н	0.	118 BS	С	2.99 BSC			
J	0.018	1	0.022	0.45	-	0.55	
K	0.155	1	0.167	3.94	-	4.24	
L	0.067	-	0.072	1.70	-	1.82	
М	0°		8°	0°	-	8°	
N	0.035	-	0.047	0.89	-	1.19	

3-Pin Surface Mount TO-252 (SJ)

	I	NCHES	3	MILLIMETERS			
	MIN TYP MAX		MIN	TYP	MAX		
Α	0.086	-	0.094	2.18	-	2.39	
A1	0.040	-	0.050	1.02	-	1.27	
b	-	0.024	-	,	0.61	-	
b2	0.205	-	0.215	5.21	-	5.46	
С	0.018	-	0.023	0.46	-	0.58	
c1	0.018	-	0.023	0.46	-	0.58	
D	0.210	-	0.220	5.33	-	5.59	
Е	0.250	-	0.265	6.35	-	6.73	
е	0.	.090 BS	C	2.29 BSC			
e1	0.	180 BS	C	4.58 BSC			
Н	0.370	-	0.410	9.40	-	10.41	
L	0.020	-	-	0.51	-	-	
L1	0.025	-	0.040	0.64	-	1.02	
L2	0.060	-	0.080	1.52	-	2.03	

IMPORTANT NOTICE

ADDtek reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. ADDtek integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of ADDtek products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

ADDtek assumes to no liability to customer product design or application support. ADDtek warrants the performance of its products to the specifications applicable at the time of sale.

ADDtek Corp.

9F, No. 20, Sec. 3, Bade Rd., Taipei, Taiwan, 105

TEL: 2-25700299 FAX: 2-25700196