
Features

- Utilizes the AVR[®] RISC Architecture
- AVR High-performance and Low-power RISC Architecture
 - 118 Powerful Instructions Most Single Clock Cycle Execution
 - 32 x 8 General-purpose Working Registers
 - Up to 10 MIPS Throughput at 10 MHz
- Data and Nonvolatile Program Memory
- 2K Bytes of In-System Programmable Flash Endurance: 1,000 Write/Erase Cycles
 - 128 Bytes Internal RAM
 - 128 Bytes of In-System Programmable EEPROM
 - Endurance: 100,000 Write/Erase Cycles
- Programming Lock for Flash Program and EEPROM Data Security
- Peripheral Features
 - One 8-bit Timer/Counter with Separate Prescaler
 - Programmable Watchdog Timer with On-chip Oscillator
 - SPI Serial Interface for In-System Programming
- Special Microcontroller Features
 - Low-power Idle and Power-down Modes
 - External and Internal Interrupt Sources
 - Power-on Reset Circuit
 - Selectable On-chip RC Oscillator
- Specifications
 - Low-power, High-speed CMOS Process Technology
 - Fully Static Operation
- Power Consumption at 4 MHz, 3V, 25°C
 - Active: 2.4 mA
 - Idle Mode: 0.5 mA
 - Power-down Mode: <1 µA</p>
- I/O and Packages
 - Three Programmable I/O Lines for AT90S/LS2323
 - Five Programmable I/O Lines for AT90S/LS2343
 - 8-pin PDIP and SOIC
- Operating Voltages
 - 4.0 6.0V for AT90S2323/AT90S2343
 - 2.7 6.0V for AT90LS2323/AT90LS2343
- Speed Grades
 - 0 10 MHz for AT90S2323/AT90S2343-10
 - 0 4 MHz for AT90LS2323/AT90LS2343-4
 - 0 1 MHz for AT90LS2343-1

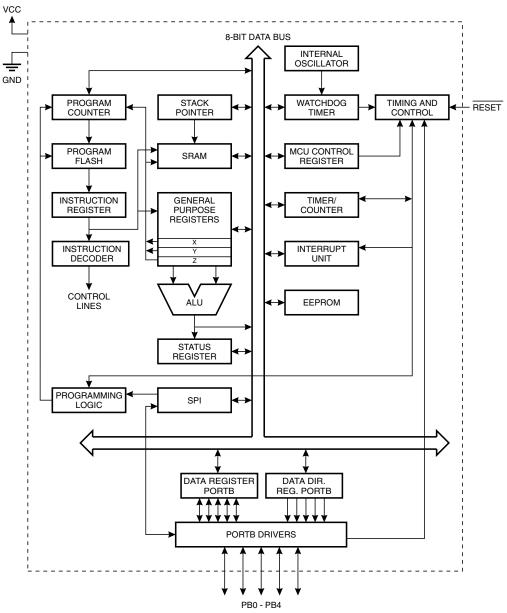
Pin Configuration

8-bit **AVR**[®] Microcontroller with 2K Bytes of In-System Programmable Flash

AT90S2323 AT90LS2323 AT90S2343 AT90LS2343

Summary

Rev. 1004DS-09/01


Description

The AT90S/LS2323 and AT90S/LS2343 are low-power, CMOS, 8-bit microcontrollers based on the AVR RISC architecture. By executing powerful instructions in a single clock cycle, the AT90S2323/2343 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

The AVR core combines a rich instruction set with 32 general-purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

Figure 1. The AT90S/LS2343 Block Diagram

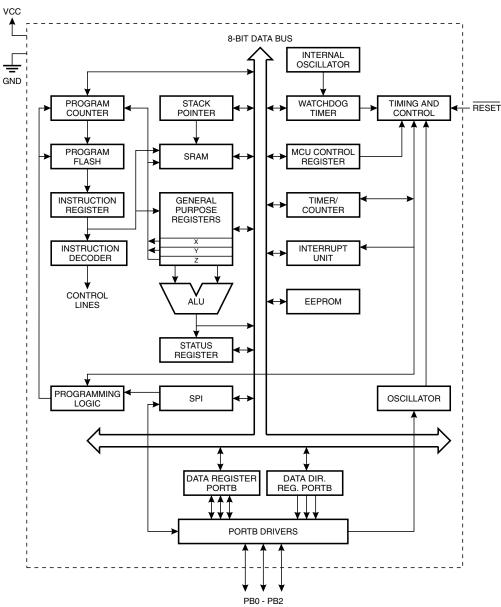


Figure 2. The AT90S/LS2323 Block Diagram

The AT90S2323/2343 provides the following features: 2K bytes of In-System Programmable Flash, 128 bytes EEPROM, 128 bytes SRAM, 3 (AT90S/LS2323)/5 (AT90S/LS2343) general-purpose I/O lines, 32 general-purpose working registers, an 8bit timer/counter, internal and external interrupts, programmable Watchdog Timer with internal oscillator, an SPI serial port for Flash Memory downloading and two softwareselectable power-saving modes. The Idle mode stops the CPU while allowing the SRAM, timer/counters, SPI port and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the oscillator, disabling all other chip functions until the next interrupt or hardware reset.

The device is manufactured using Atmel's high-density nonvolatile memory technology. The On-chip Flash allows the program memory to be reprogrammed in-system through an SPI serial interface. By combining an 8-bit RISC CPU with ISP Flash on a monolithic

chip, the Atmel AT90S2323/2343 is a powerful microcontroller that provides a highly flexible and cost-effective solution to many embedded control applications.

The AT90S2323/2343 AVR is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators and evaluation kits.

Comparison between AT90S/LS2323 and AT90S/LS2343

The AT90S/LS2323 is intended for use with external quartz crystal or ceramic resonator as the clock source. The start-up time is fuse-selectable as either 1 ms (suitable for ceramic resonator) or 16 ms (suitable for crystal). The device has three I/O pins.

The AT90S/LS2343 is intended for use with either an external clock source or the internal RC oscillator as clock source. The device has five I/O pins.

Table 1 summarizes the differences in features of the two devices.

Table 1.	Feature D)ifference	Summary
----------	-----------	------------	---------

Part	AT90S/LS2323	AT90S/LS2343
On-chip Oscillator Amplifier	yes	no
Internal RC Clock	no	yes
PB3 available as I/O pin	never	internal clock mode
PB4 available as I/O pin	never	always
Start-up time	1 ms/16 ms	16 µs fixed

Pin Descriptions AT90S/LS2323

A1500/202020	
VCC	Supply voltage pin.
GND	Ground pin.
Port B (PB2PB0)	Port B is a 3-bit bi-directional I/O port with internal pull-up resistors. The Port B output buffers can sink 20 mA. As inputs, Port B pins that are externally pulled low, will source current if the pull-up resistors are activated.
	Port B also serves the functions of various special features.
	Port pins can provide internal pull-up resistors (selected for each bit). The Port B pins are tri-stated when a reset condition becomes active.
RESET	Reset input. An external reset is generated by a low level on the $\overrightarrow{\text{RESET}}$ pin. Reset pulses longer than 50 ns will generate a reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset.
XTAL1	Input to the inverting oscillator amplifier and input to the internal clock operating circuit.
XTAL2	Output from the inverting oscillator amplifier.

AT90S/LS2323/2343

Pin Descriptions AT90S/LS2343

vcc	Supply voltage pin.
GND	Ground pin.
Port B (PB4PB0)	Port B is a 5-bit bi-directional I/O port with internal pull-up resistors. The Port B output buffers can sink 20 mA. As inputs, Port B pins that are externally pulled low, will source current if the pull-up resistors are activated.
	Port B also serves the functions of various special features.
	Port pins can provide internal pull-up resistors (selected for each bit). The Port B pins are tri-stated when a reset condition becomes active.
RESET	Reset input. An external reset is generated by a low level on the $\overline{\text{RESET}}$ pin. Reset pulses longer than 50 ns will generate a reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset.
CLOCK	Clock signal input in external clock mode.

AT90S2323/2343 Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
\$3F (\$5F)	SREG	I	Т	Н	S	V	Ν	Z	С	page 18
\$3E (\$5E)	Reserved		-			-		-		
\$3D (\$5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	page 19
\$3C (\$5C)	Reserved									
\$3B (\$5B)	GIMSK	-	INT0	-	-	-	-	-	-	page 24
\$3A (\$5A)	GIFR	-	INTF0							page 25
\$39 (\$59)	TIMSK	-	-	-	-	-	-	TOIE0	-	page 25
\$38 (\$58)	TIFR	-	-	-	-	-	-	TOV0	-	page 25
\$37 (\$57)	Reserved									
\$36 (\$56)	Reserved									
\$35 (\$55)	MCUCR	-	-	SE	SM	-	-	ISC01	ISC00	page 26
\$34 (\$54)	MCUSR	-	-	-	-	-	-	EXTRF	PORF	page 23
\$33 (\$53)	TCCR0	-	-	-	-	-	CS02	CS01	CS00	page 29
\$32 (\$52)	TCNT0	Timer/Count	er0 (8 Bits)							page 30
\$31 (\$51)	Reserved									
\$30 (\$50)	Reserved									
\$2F (\$4F)	Reserved									
\$2E (\$4E)	Reserved									
\$2D (\$4D)	Reserved									
\$2C (\$4C)	Reserved									
\$2B (\$4B)	Reserved									
\$2A (\$4A)	Reserved									
\$29 (\$49)	Reserved									
\$28 (\$48)	Reserved									
\$27 (\$47)	Reserved									
\$26 (\$46)	Reserved									
\$25 (\$45)	Reserved									
\$24 (\$44)	Reserved									
\$23 (\$43)	Reserved									
\$22 (\$42)	Reserved									
\$21 (\$41)	WDTCR	-	-	-	WDTOE	WDE	WDP2	WDP1	WDP0	page 31
\$20 (\$40)	Reserved									
\$1F (\$3F)	Reserved									
\$1E (\$3E)	EEAR	-	EEPROM Ad	dress Register						page 32
\$1D (\$3D)	EEDR	EEPROM D	ata Register							page 32
\$1C (\$3C)	EECR	-	-	-	-	-	EEMWE	EEWE	EERE	page 32
\$1B (\$3B)	Reserved									
\$1A (\$3A)	Reserved									
\$19 (\$39)	Reserved			_						
\$18 (\$38)	PORTB	-	-	-	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	page 35
\$17 (\$37)	DDRB	-	-	-	DDB4	DDB3	DDB2	DDB1	DDB0	page 35
\$16 (\$36)	PINB	-	-	-	PINB4	PINB3	PINB2	PINB1	PINB0	page 36
\$15 (\$35)	Reserved									
	Reserved									
\$00 (\$20)	Reserved									

Note:

te: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

2. Some of the status flags are cleared by writing a logical "1" to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers \$00 to \$1F only.

Instruction Set Summary

Mnemonic	Operands	Description	Operation	Flags	# Clocks
ARITHMETIC AND	LOGIC INSTRUCTIO	INS			
ADD	Rd, Rr	Add Two Registers	$Rd \leftarrow Rd + Rr$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry Two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rdl, K	Add Immediate to Word	Rdh:Rdl ← Rdh:Rdl + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract Two Registers	$Rd \leftarrow Rd - Rr$	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$Rd \leftarrow Rd - K$	Z,C,N,V,H	1
SBIW	Rdl, K	Subtract Immediate from Word	$Rdh:RdI \leftarrow Rdh:RdI - K$	Z,C,N,V,S	2
SBC	Rd, Rr	Subtract with Carry Two Registers	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$Rd \leftarrow Rd - K - C$	Z,C,N,V,H	1
AND	Rd, Rr	Logical AND Registers	$Rd \leftarrow Rd \bullet Rr$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \gets Rd \bullet K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$Rd \leftarrow Rd \lor Rr$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd \lor K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$Rd \gets Rd \oplus Rr$	Z,N,V	1
COM	Rd	One's Complement	$Rd \gets \$FF - Rd$	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← \$00 – Rd	Z,C,N,V,H	1
SBR	Rd, K	Set Bit(s) in Register	$Rd \leftarrow Rd \lor K$	Z,N,V	1
CBR	Rd, K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (\$FF - K)$	Z,N,V	1
INC	Rd	Increment	$Rd \leftarrow Rd + 1$	Z,N,V	1
DEC	Rd	Decrement	$Rd \leftarrow Rd - 1$	Z,N,V	1
TST	Rd	Test for Zero or Minus	$Rd \leftarrow Rd \bullet Rd$	Z,N,V	1
CLR	Rd	Clear Register	$Rd \gets Rd \oplus Rd$	Z,N,V	1
SER	Rd	Set Register	$Rd \leftarrow \$FF$	None	1
BRANCH INSTRU	CTIONS				
RJMP	k	Relative Jump	$PC \leftarrow PC + k + 1$	None	2
IJMP		Indirect Jump to (Z)	$PC \leftarrow Z$	None	2
RCALL	k	Relative Subroutine Call	$PC \leftarrow PC + k + 1$	None	3
ICALL		Indirect Call to (Z)	$PC \leftarrow Z$	None	3
RET		Subroutine Return	$PC \leftarrow STACK$	None	4
RETI		Interrupt Return	$PC \leftarrow STACK$	1	4
CPSE	Rd, Rr	Compare, Skip if Equal	if (Rd = Rr) PC \leftarrow PC + 2 or 3	None	1/2/3
CP	Rd, Rr	Compare	Rd – Rr	Z,N,V,C,H	1
CPC	Rd, Rr	Compare with Carry	Rd – Rr – C	Z,N,V,C,H	1
CPI	Rd, K	Compare Register with Immediate	Rd – K	Z,N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if $(Rr(b) = 0) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if $(Rr(b) = 1) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if $(P(b) = 0) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if $(R(b) = 1) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC \leftarrow PC + k + 1	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then PC \leftarrow PC + k + 1	None	1/2
BREQ	k	Branch if Equal	if (Z = 1) then PC \leftarrow PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal	if (Z = 0) then PC \leftarrow PC + k + 1	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC \leftarrow PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if (N = 0) then PC \leftarrow PC + k + 1	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if $(N \oplus V = 0)$ then PC \leftarrow PC + k + 1	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if $(N \oplus V = 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRHS	k	Branch if Half-carry Flag Set	if (H = 1) then PC \leftarrow PC + k + 1	None	1/2
BRHC	k	Branch if Half-carry Flag Cleared	if (H = 0) then PC \leftarrow PC + k + 1	None	1/2
BRTS	k	Branch if T-flag Set	if (T = 1) then PC \leftarrow PC + k + 1	None	1/2
BRTC	k	Branch if T-flag Cleared	if $(T = 0)$ then PC \leftarrow PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC \leftarrow PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared			1/2
			if $(V = 0)$ then PC \leftarrow PC + k + 1 if $(l = 1)$ then PC \leftarrow PC + k + 1	None	
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC \leftarrow PC + k + 1	None	1/2

Instruction Set Summary (Continued)

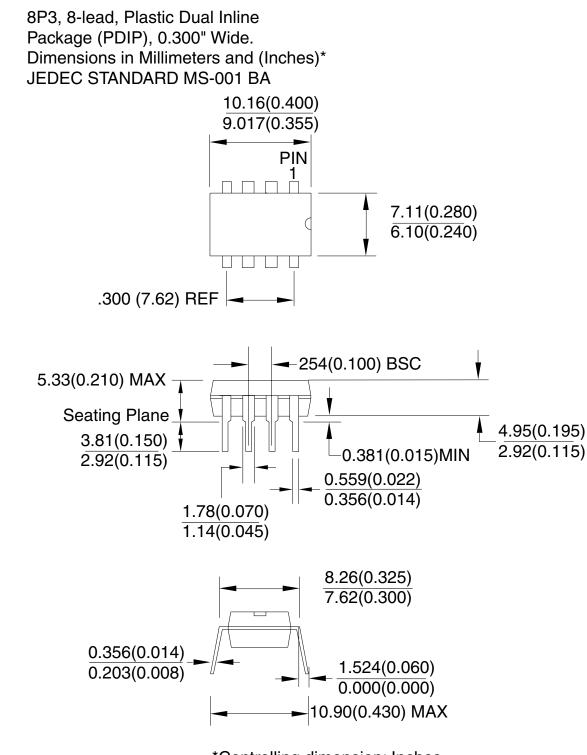
Mnemonic	Operands	Description	Operation	Flags	# Clocks
DATA TRANSFER	INSTRUCTIONS				
MOV	Rd, Rr	Move between Registers	$Rd \leftarrow Rr$	None	1
LDI	Rd, K	Load Immediate	$Rd \leftarrow K$	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, -X	Load Indirect and Pre-dec.	$X \leftarrow X - 1$, Rd \leftarrow (X)	None	2
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2
LD	Rd, Y+	Load Indirect and Post-inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, -Y	Load Indirect and Pre-dec.	$Y \leftarrow Y - 1, Rd \leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-inc.	$Rd \leftarrow (Z), Z \leftarrow Z + 1$	None	2
LD	Rd, -Z	Load Indirect and Pre-dec.	$Z \leftarrow Z - 1, Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	$Rd \leftarrow (k)$	None	2
ST	X, Rr	Store Indirect	$(X) \leftarrow Rr$	None	2
ST					2
ST	X+, Rr -X, Rr	Store Indirect and Post-inc.	$(X) \leftarrow \operatorname{Rr}, X \leftarrow X + 1$	None	2
		Store Indirect and Pre-dec.	$X \leftarrow X - 1, (X) \leftarrow Rr$	None	
ST	Y, Rr	Store Indirect	$(Y) \leftarrow Rr$	None	2
ST	Y+, Rr	Store Indirect and Post-inc.	$(Y) \leftarrow \operatorname{Rr}, Y \leftarrow Y + 1$	None	2
ST	-Y, Rr	Store Indirect and Pre-dec.	$Y \leftarrow Y - 1, (Y) \leftarrow Rr$	None	2
STD	Y+q, Rr	Store Indirect with Displacement	$(Y + q) \leftarrow Rr$	None	2
ST	Z, Rr	Store Indirect	$(Z) \leftarrow Rr$	None	2
ST	Z+, Rr	Store Indirect and Post-inc.	$(Z) \leftarrow \operatorname{Rr}, Z \leftarrow Z + 1$	None	2
ST	-Z, Rr	Store Indirect and Pre-dec.	$Z \leftarrow Z - 1, (Z) \leftarrow Rr$	None	2
STD	Z+q, Rr	Store Indirect with Displacement	$(Z + q) \leftarrow Rr$	None	2
STS	k, Rr	Store Direct to SRAM	$(k) \leftarrow Rr$	None	2
LPM		Load Program Memory	$R0 \leftarrow (Z)$	None	3
IN	Rd, P	In Port	$Rd \leftarrow P$	None	1
OUT	P, Rr	Out Port	P ← Rr	None	1
PUSH	Rr	Push Register on Stack	STACK ← Rr	None	2
POP	Rd	Pop Register from Stack	$Rd \gets STACK$	None	2
BIT AND BIT-TES					
SBI	P, b	Set Bit in I/O Register	$I/O(P,b) \leftarrow 1$	None	2
CBI	P, b	Clear Bit in I/O Register	$I/O(P,b) \leftarrow 0$	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left through Carry	$Rd(0) \gets C, Rd(n+1) \gets Rd(n), C \gets Rd(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right through Carry	$Rd(7) \leftarrow C, Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	Rd(n) ← Rd(n+1), n = 06	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	$Rd(30) \leftarrow Rd(74), Rd(74) \leftarrow Rd(30)$	None	1
BSET	s	Flag Set	$SREG(s) \leftarrow 1$	SREG(s)	1
BCLR	s	Flag Clear	$SREG(s) \leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	Т	1
BLD	Rd, b	Bit Load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC		Set Carry	C ← 1	С	1
CLC		Clear Carry	$C \leftarrow 0$	С	1
SEN		Set Negative Flag	N ← 1	Ν	1
CLN		Clear Negative Flag	$N \leftarrow O$	Ν	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable	← 1	1	1
CLI		Global Interrupt Disable	I ← 0	1	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Two's Complement Overflow	V ← 1	V	1
CLV		Clear Two's Complement Overflow	V ← 0	V	1
SET		Set T in SREG	T ← 1	T	1
		Clear T in SREG	$T \leftarrow 0$	T	1
CLT	1	Set Half-carry Flag in SREG	H←1	Н	1
CLT SEH			11 – 1	1 11	1 1
SEH					1
SEH CLH		Clear Half-carry Flag in SREG	H ← 0	Н	1
SEH			H ← 0 (see specific descr. for Sleep function)		1 1 1

Ordering Information

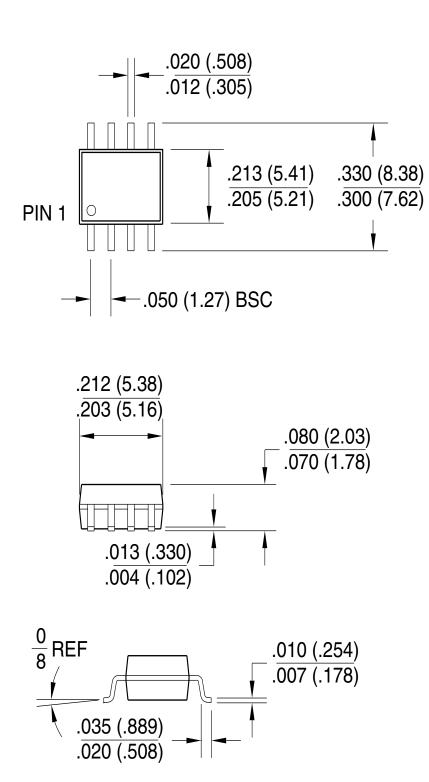
Power Supply	Speed (MHz)	Ordering Code	Package	Operation Range
2.7 - 6.0V	4	AT90LS2323-4PC	8P3	Commercial
		AT90LS2323-4SC	8S2	(0°C to 70°C)
		AT90LS2323-4PI	8P3	Industrial
		AT90LS2323-4SI	8S2	(-40°C to 85°C)
4.0 - 6.0V	10	AT90S2323-10PC	8P3	Commercial
		AT90S2323-10SC	8S2	(0°C to 70°C)
		AT90S2323-10PI	8P3	Industrial
		AT90S2323-10SI	8S2	(-40°C to 85°C)
2.7 - 6.0V	1	AT90LS2343-1PC	8P3	Commercial
		AT90LS2343-1SC	8S2	(0°C to 70°C)
		AT90LS2343-1PI	8P3	Industrial
		AT90LS2343-1SI	8S2	(-40°C to 85°C)
2.7 - 6.0V	4	AT90LS2343-4PC	8P3	Commercial
		AT90LS2343-4SC	8S2	(0°C to 70°C)
		AT90LS2343-4PI	8P3	Industrial
		AT90LS2343-4SI	8S2	(-40°C to 85°C)
4.0 - 6.0V	10	AT90S2343-10PC	8P3	Commercial
		AT90S2343-10SC	8S2	(0°C to 70°C)
		AT90S2343-10PI	8P3	Industrial
		AT90S2343-10SI	8S2	(-40°C to 85°C)

Notes: 1. The speed grade refers to maximum clock rate when using an external crystal or external clock drive. The internal RC oscillator has the same nominal clock frequency for all speed grades.

2. In AT90LS2343-1xx, the internal RC oscillator is selected as default MCU clock source (RCEN fuse is programmed) when the device is shipped from Atmel. In AT90LS2343-4xx and AT90S2343-10xx, the default MCU clock source is the clock input pin (RCEN fuse is unprogrammed). The fuse settings can be changed by high voltage serial programming.


	Package Type
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
8S2	8-lead, 0.200" Wide, Plastic Gull Wing Small Outline Package (EIAJ SOIC)

Packaging Information


8P3

*Controlling dimension: Inches

REV. A 04/11/2001

8S2

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL (408) 441-0311 FAX (408) 487-2600

Europe

Atmel SarL Route des Arsenaux 41 Casa Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Atmel Asia, Ltd. Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

Atmel Japan K.K. 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Product Operations

Atmel Colorado Springs 1150 E. Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL (719) 576-3300 FAX (719) 540-1759

Atmel Grenoble

Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-7658-3000 FAX (33) 4-7658-3480

Atmel Heilbronn

Theresienstrasse 2 POB 3535 D-74025 Heilbronn, Germany TEL (49) 71 31 67 25 94 FAX (49) 71 31 67 24 23

Atmel Nantes

La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 0 2 40 18 18 18 FAX (33) 0 2 40 18 19 60

Atmel Rousset

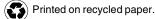
Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-4253-6000 FAX (33) 4-4253-6001

Atmel Smart Card ICs

Scottish Enterprise Technology Park East Kilbride, Scotland G75 0QR TEL (44) 1355-357-000 FAX (44) 1355-242-743

> *e-mail* literature@atmel.com

> Web Site http://www.atmel.com


BBS 1-(408) 436-4309

© Atmel Corporation 2001.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

ATMEL® and AVR® are the registered trademarks of Atmel.

Other terms and product names may be the trademarks of others.

