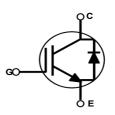
December 2011

FGP15N60UNDF 600V, 15A **Short Circuit Rated IGBT**

Features

- · Short circuit rated 10us
- High current capability
- · High input impedance
- Fast switching
- RoHS compliant


Applications

- · Home appliance inverter-driven appplication - Air Condtioner, Washing Machine, Refrigerator, Dish Washer
- Industrial Inverter Sewing Machine, CNC

General Description

Using advanced NPT IGBT Technology, Fairchild's the NPT IGBTs offer the optimum performance for low power inverterdriven applications where low-losses and short circuit ruggedness feature are essential.

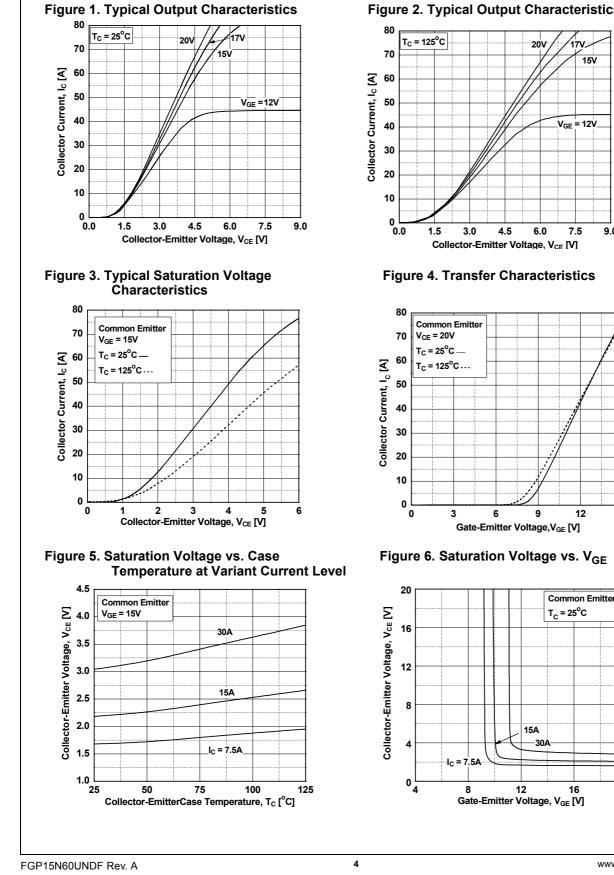
Absolute Maximum Ratings

Symbol	Description		Ratings	Units
V _{CES}	Collector to Emitter Voltage		600	V
V _{GES}	Gate to Emitter Voltage		± 20	V
I _C	Collector Current	@ T _C = 25 ^o C	30	A
	Collector Current	@ T _C = 100°C	15	A
I _{CM (1)}	Pulsed Collector Current	@ T _C = 25 ^o C	45	А
I _F	Diode Forward Current	@ T _C = 25°C	15	А
P _D	Maximum Power Dissipation	@ T _C = 25 ^o C	178	W
	Maximum Power Dissipation	@ T _C = 100°C	71	W
TJ	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C

Notes: 1: Repetitive test , Pulse width=100usec , Duty=0.2, V_{GE} =13.5V

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}(IGBT)$	Thermal Resistance, Junction to Case		0.7	°C/W
$R_{\theta JC}(Diode)$	Thermal Resistance, Junction to Case		2.3	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient (PCB Mount)(2)		62.5	°C/W


		Package	Packaging Package Type		Qty per Tube		Max Qty per Box	
		TO220	Tube	50	Dea		-	
Electric		enteriotice of th						
Symbol		Parameter		c = 25°C unless otherwise noted	Min.	Тур.	Max.	Units
Off Charac	toristics							
BV _{CES}		to Emitter Breakdown Vol	tage Vor = 0	V, I _C = 250μA	600	-	_	V
I _{CES}		Cut-Off Current		$V_{CES}, V_{GE} = 0V$	-	_	1	mA
I _{GES}		age Current		$V_{\text{GES}}, V_{\text{CE}} = 0V$	_	-	±10	μA
			·GE ·	GES, CE CI				pu i
On Charac			1 - 45	$-\lambda = \lambda$		6.0	0.5	V
V _{GE(th)}	G-E Inres	shold Voltage	_	mA, $V_{CE} = V_{GE}$	5.5	6.8	8.5	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage		000	$A, V_{GE} = 15V$	-	2.2	2.7	V
CE(sat)			$T_{\rm C} = 157$ $T_{\rm C} = 12$	A, V _{GE} = 15V, 5°C	-	2.7	-	V
Dynamic C	haracteris	tics	÷					
C _{ies}	Input Cap				-	619	-	pF
C _{oes}		apacitance		0V, V _{GE} = 0V,	-	80	-	pF
C _{res}		Fransfer Capacitance	f = 1MH	Z	-	24	-	pF
	Charaotari	ation			-	<u> </u>	<u>I</u>	
Switching t _{d(on)}	1	Delay Time			-	9.3	-	ns
t _r	Rise Time				-	9.8	_	ns
		Delay Time		00)/ 1 - 154	_	54.8	-	ns
t _{d(off)} t _f	Fall Time			00V, I _C = 15A,)Ω, V _{GE} = 15V,	_	9.9	12.8	ns
E _{on}		Switching Loss	Inductiv	e Load, T _C = 25°C	-	0.37	-	mJ
E _{off}		Switching Loss			_	0.067	-	mJ
Ε _{ts}		ching Loss			-	0.44	-	mJ
t _{d(on)}		Delay Time			_	8.9	_	ns
t _r	Rise Time	,			-	9.9	-	ns
t _{d(off)}		Delay Time	$V_{ab} = A$.00V, I _C = 15A,	-	56.6	-	ns
-d(011) t _f	Fall Time	,	R _G = 10	Ω, V _{GE} = 15V,	-	13.2	-	ns
E _{on}	Turn-On S	Switching Loss	Inductiv	e Load, T _C = 125°C	-	0.54	-	mJ
E _{off}		Switching Loss			-	0.11	-	mJ
E _{ts}		ching Loss			-	0.65	-	mJ
T _{sc}		cuit Withstand Time	V _{CC} = 3 R _G = 10 T _C = 15	00Ω, V _{GE} = 15V,	10	-	-	μs

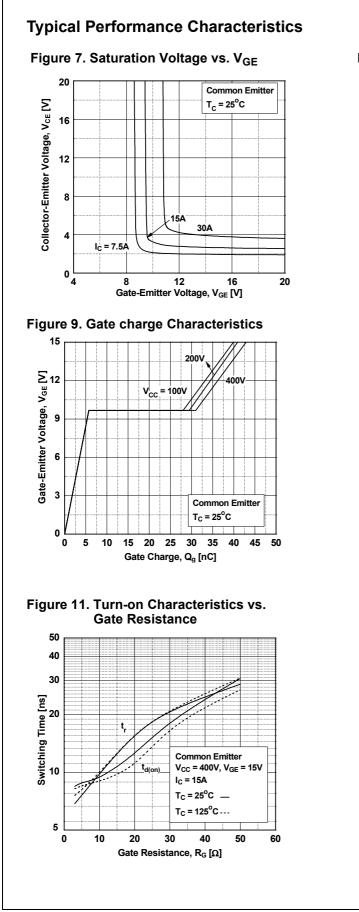
Electrical Characteristics of the IGBT $T_{C} = 25^{\circ}C$ unless otherwise noted

Qg	Total Gate Charge		-	43	-	nC
Q _{ge}	Gate to Emitter Charge	V _{CE} = 400V, I _C = 15A, V _{GE} = 15V	-	6	-	nC
Q _{gc}	Gate to Collector Charge		-	26	-	nC

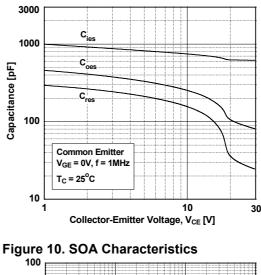
Electrical Characteristics of the Diode $T_C = 25^{\circ}C$ unless otherwise noted

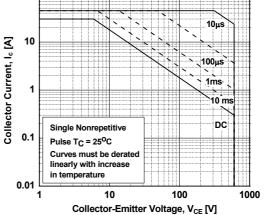
Symbol	Parameter	Test Conditions		Min.	Тур.	Max	Units
V _{FM} D	Diode Forward Voltage	I _F = 15A	T _C = 25°C	-	1.6	2.2	V
			T _C = 125°C	-	1.5	-]]]
t	Diode Reverse Recovery Time		T _C = 25°C	-	82.4		ns
۲rr			T _C = 125°C	-	142	-	
Q _{rr}	Diode Reverse Recovery Charge		T _C = 25°C	-	213	-	nC
~ []			T _C = 125°C	-	541	-	

Typical Performance Characteristics


Figure 2. Typical Output Characteristics

15V


9.0


15

20

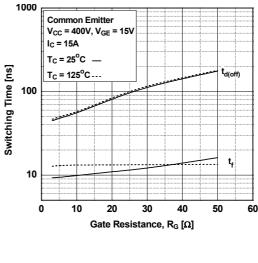
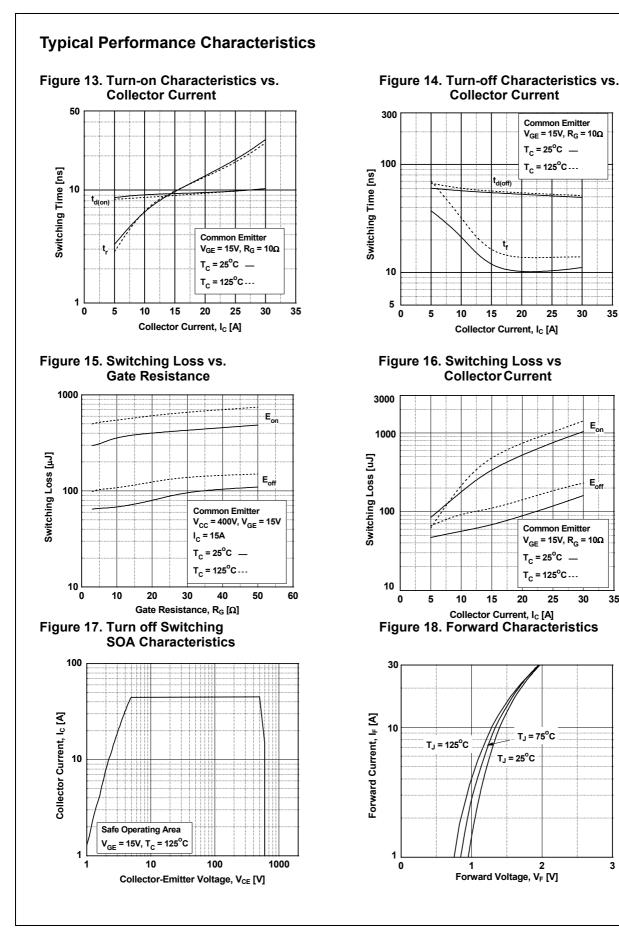


Figure 8. Capacitance Characteristics

30


Eor

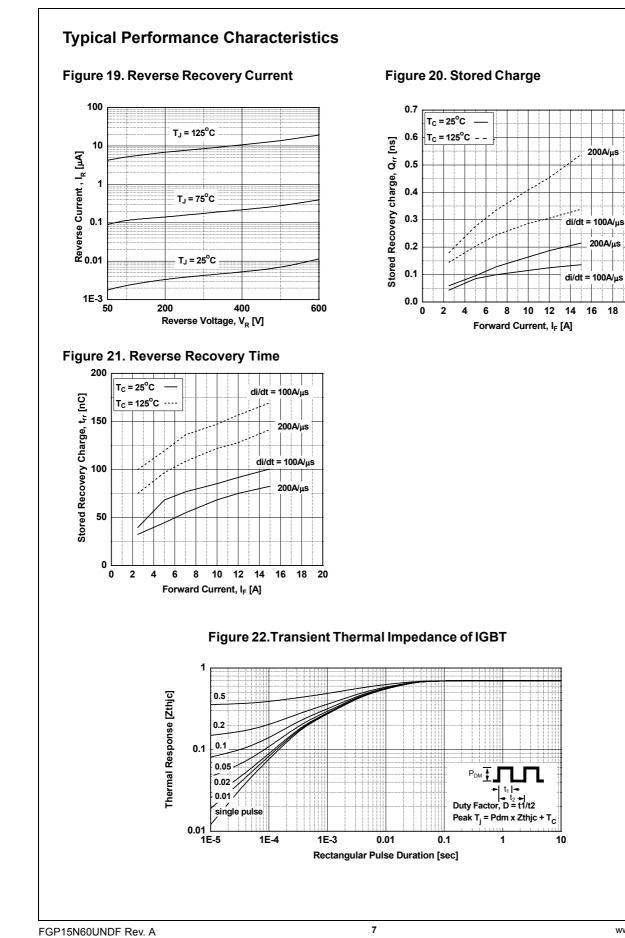
Eoff

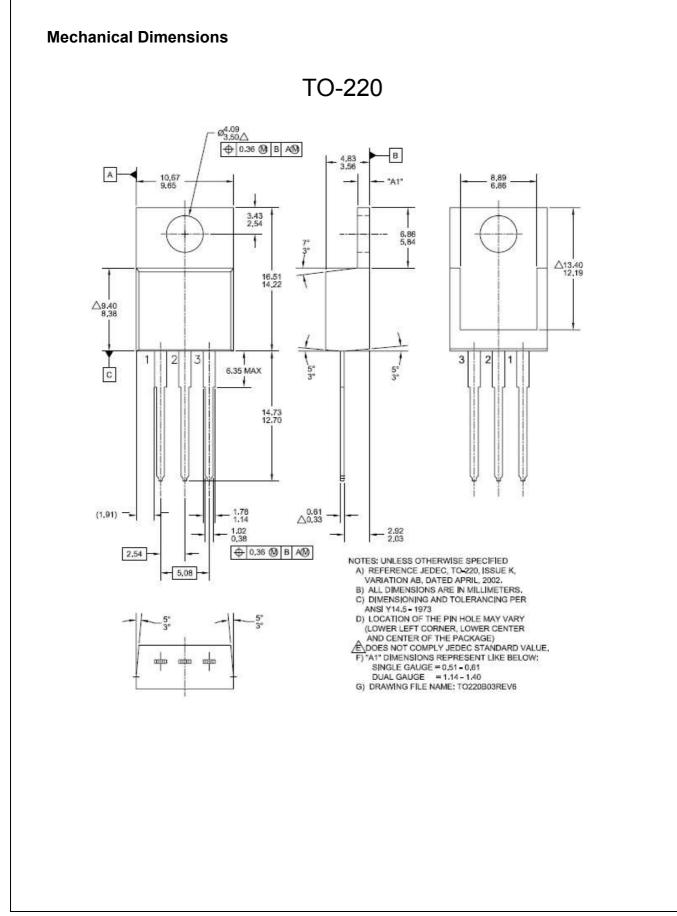
30

35

35

FGP15N60UNDF Rev. A


www.fairchildsemi.com


3

200A/µs

200A/µs

16 18 20

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

PDP SPM™

2Cool™ AccuPower™ Auto-SPM™ AX-CAP™* BitSiC[®] Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK[®] EfficentMax™ ESBC™

Ŧ Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT[®] FAST® FastvCore™ FETBench™ FlashWriter[®] *

FPS™ F-PES™ FRFET® Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ G*max*™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive ™ MotionMax™ Motion-SPM™ mWSaver™ OptoHiT™ **OPTOLOGIC**® **OPTOPLANAR[®]** ര

Power-SPM™ PowerTrench[®] PowerXS™ Programmable Active Droop™ QFET[®] QS™ Quiet Series™ RapidConfigure™ тм Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM® STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS[®] SyncFET™

p wer TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC[®]

UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

Sync-Lock™

SYSTEM ® GENERAL

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

The Power Franchise®