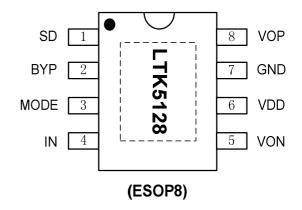


LTK5128

概述

LTK5128 是一款5W、单声道AB类/D类工作模式切换功能、超低EMI、无需滤波器的音频功率放大芯片。LTK5128通过一个MODE管脚可以方便地切换为AB类模式,完全消除EMI干扰。工作电压2.5V-5.5V,在D类放大器模式下可以提供高于90%的效率,新型的无滤波器结构可以省去传统D类放大器的输低通滤波器,从而节省了系统成本和PCB空间,是便携式应用的理想选择。LTK5128采用独有的DRC(Dynamic range control)技术,降低了大功率输出时,由于波形切顶带来的失真,相比同类产品,动态反应更加出色。LTK5128采用ESOP-8封装。


特点

- 无滤波的 D 类/AB 类放大器、低静态电流和 低 EMI
- FM 模式无干扰
- 优异的爆破声抑制电路
- 低底噪、低失真
- DRC 动态失真矫正电路
- 10% THD+N, VDD=5V, 4Ω 负载下,提供 高达 3W 的输出功率
- 10% THD+N, VDD=5V, 2Ω 负载下,提供 高达 5W 的输出功率
- 短路电流保护
- 欠压保护
- 关断电流 < 0.5uA
- 多种功率封装模式: ESOP-8
- 过热保护

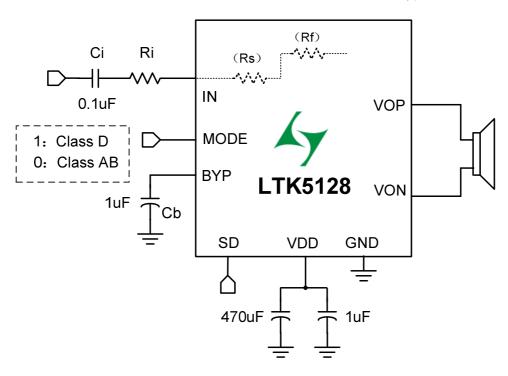
应用

- 蓝牙音箱
- 拉杆音箱、USB 音响
- 视频机、扩音器等

芯片管脚图

封装信息

产品	封装形 式	封装尺寸 (mm)	脚间距 (mm)
LTK5128	ESOP-8		


管脚信息

序号	符号	描述
1	SD	关断控制,高电平关断
2	ВҮР	内部共模参考电压
3	MODE	高电平 D 类,低电平 AB 类, 默认是 AB 类
4	IN	模拟输入端,反相
5	VON	模拟输出端负极
6	VDD	电源正
7	GND	电源地
8	VOP	模拟输出正极

典型应用图

$$A_v = 20 log \left(\frac{2 \times R_f}{R_i + R_s}\right)$$
 $R_f = 195 k \Omega$ (內置) $R_S = 6.5 k \Omega$ (內置)

原理框图

管脚说明

No.	管脚名称	I 0	功能
1	SD	I	关断控制。高电平关断,低电平开启。
2	BYP	Ю	内部共模参考电压
3	MODE	I	高电平 D 类,低电平 AB 类,默认是 AB 类
4	IN	I	模拟输入端,反相
5	VON	0	模拟输出端负极
6	VDD	Ю	电源
7	GND	Ю	电源地
8	VOP	0	模拟输出正极

最大额定值(T₄=25℃)

参数名称	符号	数值	单位
工作电压	V_{cc}	6.0	V
存储温度	$T_{ m stg}$	-65°C-150°C	$^{\circ}$
输入电压		-0.3 to + $(0.3+V_{cc})$	V
功率消耗	P_{D}	见附注1	W
结温度		160℃	$^{\circ}$

附注1:最大功耗取决于三个因素: T_{JMAX} , T_A , θ_{JA} , 它的计算公式 P_{JMAX} = $(T_{JMAX}$ - T_A)/ θ_{JA} , LTK5128的 T_{JMA} =150 $\mathbb C$ 。 T_A 为外部环境的温度, θ_{JA} 取决于不同的封装形式。

电气参数

一、CLASS D 模式

1) 静态电气参数

MODE=VDD, ClassD 模式,V_{DD}=5V,T_A=25℃的条件下:

信号	参数	测试条件		最小值	典型值	最大值	单位
V_{DD}	电源电压			2.5	5	5.5	٧
I _{DD}	静态电源电流	MODE=VDD; V _D	MODE=VDD; V _{DD} =5V, I _O =0A			8	mA
I _{SHDN}	关断电流	V _{DD} =2.5V 到 5.5	V			1	uA
F _{SW}	振荡频率	V _{DD} =2.5V 到 5.5V			480		kHz
Vos	输出失调电压	$V_{DD}=5V$, $V_{IN}=0V$			10		mV
n	效率	THD+N=10%, f=1kHz,R _L =2 Ω ;			87		%
η	双争	THD+N=10%, f:	THD+N=10%, f=1kHz,R _L =4 Ω ;		90		
ОТР	过温保护				155		Ç
D	静态导通电阻	I _{DS} =0.5A	P_MOSFET		180		mΩ
R _{DSON}	押心 守	V _{GS} =5V	N_MOSFET		140		

2) 动态电气参数

MODE=VDD, ClassD 模式,V_{DD}=5V,T_A=25℃的条件下:

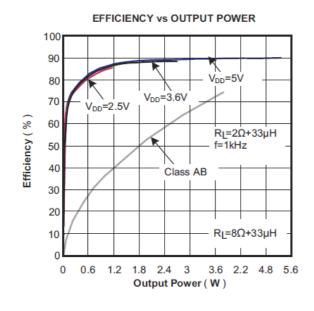
信号	参数	测试条件	1	最小值	典型值	最大值	单位
		THD+N=10%, f=1kHz	V _{DD} =5V		2.9		
		$R_L=4\Omega$;	V _{DD} =3.6V		2.3		W
			V _{DD} =3V		1.3		
P_{o}	输出功率	THD+N=1%, f=1kHz	V _{DD} =5V		2.5		
		$R_L=4\Omega$;	V _{DD} =3.6V		1.6		W
			V _{DD} =3V		0.8		
		THD+N=10%, f=1kHz	V _{DD} =5V		4.9	5.5	
		RL= 2Ω ;	V _{DD} =3.6V		3.2	3.5	W
			V _{DD} =3V		2.3	2.6	
		THD+N=1%, f=1kHz	V _{DD} =5V		4.6	4.8	
		RL=2Ω;	V _{DD} =3.6V		2.8	3	W
			V _{DD} =3V		1.4	1.5	
THD+N	总谐波失真加噪声	V_{DD} =5V P_o =0.6W, R_L =8 Ω	f=1kHz		0.12		%
		V_{DD} =3.6V P_o =0.6W, R_L =8 Ω			0.1		
		$V_{DD}=5V$ $P_{o}=1W,R_{L}=4\Omega$	f=1kHz		0.12		
		V_{DD} =3.6V P_{o} =1W, R_{L} =4 Ω			0.1		
PSRR	电源电压抑制比	V_{DD} =5V, V_{RIPPLE} =200m V_{RMS} , R_L =8 Ω , C_B =2.2 μ F			64		dB
SNR	信噪比	V _{DD} =5V, V _{orms} =1V, Gv=	=20dB		85		dB

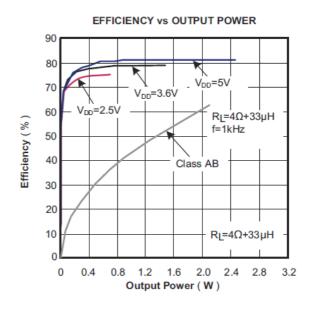
二、CLASS AB 模式(ESOP-8封装)

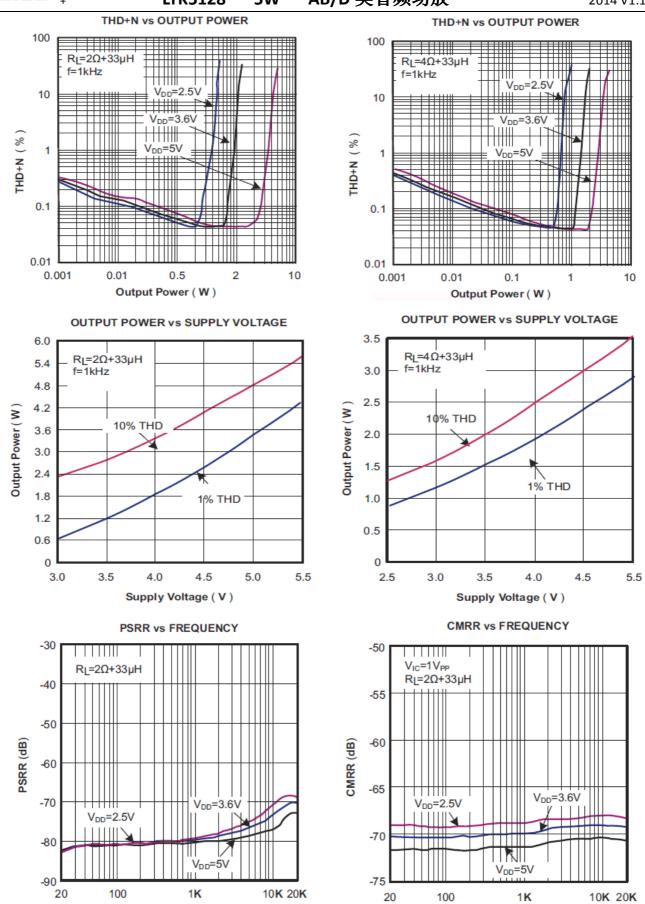
1) 静态电气参数

MODE=GND, ClassAB 模式, V_{DD}=5V, T_A=25℃的条件下:

信号	参数	测试条件	最小值	典型值	最大值	单位
V_{DD}	电源电压		2.5	5	5.5	V
I _{DD}	静态电源电流	$V_{DD}=5V$, $I_{O}=0A$	6	10	14	mA
I _{SHDN}	关断电流	V _{DD} =2.5V 到 5.5V			1	uA
Vos	输出失调电压	$V_{DD}=5V$, $V_{IN}=0V$		10		mV
ОТР	过温保护			155		°C


2014 V1.1


2) 动态电气参数


MODE=GND, ClassAB 模式,V_{DD}=5V,T_A=25℃的条件下:

信号	参数	测试条件	1	最小值	典型值	最大值	单位
		THD+N=10%, f=1kHz	V _{DD} =5V		2.9		
		$R_L=4\Omega$;	V _{DD} =3.6V		2		W
			V _{DD} =3V		1.3		
P _o	输出功率	THD+N=1%, f=1kHz	V _{DD} =5V		2.6		
		$R_L=4\Omega$;	V _{DD} =3.6V		1.6		W
			V _{DD} =3V		0.8		
		THD+N=10%, f=1kHz	V _{DD} =5V		4.9	5.5	
		$R_L=2\Omega$;	V _{DD} =3.6V		3.2	3.5	W
			V _{DD} =3V		2.3	2.6	
		THD+N=1%, f=1kHz	V _{DD} =5V		4.5	4.6	
		$R_L=2\Omega$;	V _{DD} =3.6V		2.7	2.9	W
			V _{DD} =3V		1.4	1.5	
THD+N	总谐波失真加噪声	V_{DD} =5V P_{o} =0.6W, R_{L} =8 Ω	f=1kHz		0.18		%
		$V_{DD}=3.6V$ $P_{o}=0.6W$, $R_{L}=8\Omega$			0.15		76
		V_{DD} =5 V P_{o} =1 W , R_{L} =4 Ω	f=1kHz		0.15		
		V_{DD} =3.6V P_{o} =1W, R_{L} =4 Ω			0.12		
PSRR	电源电压抑制比	V_{DD} =5V, V_{RIPPLE} =200m V_{RMS} , R_L =8 Ω , C_B =2.2 μ F			69		dB
SNR	信噪比	V _{DD} =5V, V _{orms} =1V, Gv=	=20dB		82		dB

典型工作特性

FREQUENCY (Hz)

FREQUENCY (Hz)

应用信息

1、驱动 2Ω 和 4Ω 负载时PCB 布局及补偿调节考虑事项

有阻抗的负载两端加上交流电压可产生功耗,负载的功耗随运算放大器输出端和负载间的连线(PCB连线和金属连线)而变化。连线产生的阻抗消耗是我们不想要的,比如, 0.1Ω 的连线阻抗可使 4Ω 负载的功率从2.1W减小到2.0W。当负载阻抗减少时,负载功耗减少的问题更加加重。所以,为能得到高质量的输出功率和较宽的工作频率,PCB中输出端与负载的连接应尽量宽。

2、最大增益

LTK5128的增益由内部电阻 R_i 和 R_s 以及外接电阻 R_i 决定, R_s =6.5k Ω , R_i =195k Ω ;用户可以外接 R_i 电阻,控制整体的增益。

$$A_v = 20log\left(\frac{R_f}{R_t + R_s}\right)$$

例如芯片外部串接一个 20 k Ω , 那么增益计算公式如下:

$$A_v = 20log\left(\frac{195k\Omega}{13k\Omega + 6.5k\Omega}\right) = 20dB$$

输入电阻尽量靠近LTK5128的输入管脚,可以减小PCB板上噪声的干扰。

3、偏置电容

模拟基准准旁路电容(CBYP)是最关键的电容并与几个重要性能相关,在从关闭模拟启动或复位时,CBYP决定了放大器开启的速度。第二个功能是减少电源与输出驱动信号耦合时制造的噪声,这些噪声来自于内部模拟基准或放大器等其它器件,降低了LTK5128的PSRR和THD+N性能。

4、欠压保护(UVLO)

LTK5128具有低电压检测电路,当电源电压下降到2.0V以下时,LTK5128关闭输出,直到VDD≥2.2V时器件再次开启回到正常状态。

5、电源去耦

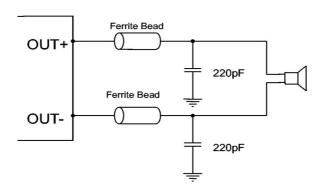
LTK5128是高性能CMOS音频放大器,需要足够的电源退耦以保证输出THD和PSRR尽可能小。电源的退 耦需要两个不同类型的电容来实现。为了更高的频率响应和减小噪声,一个适当等效串联电阻(ESR)的陶

瓷电容,典型值1.0μF,放置在尽可能靠近器件VDD端口可以得到最好的工作性能。为了虑除低频噪声信号,推荐放置一个470μF或更大的电容在电源侧。

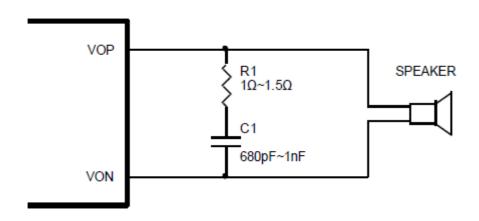
6、输入电容

$$f_{c} = \frac{1}{2\pi R_{i}C_{i}}$$

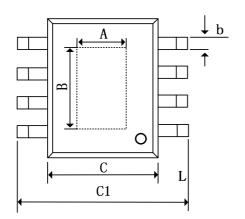
除了系统损耗和尺寸,滴答声和噼噗声受输入耦合电容Ci 的影响,一个大的输入耦合电容需要更多的电荷才能到达它的静态电压(1/2VDD)。这些电荷来自经过反馈的内部电路,和有可能产生噼噗声的器件启动端,因此,在保证低频性能的前提下减小输入电容可以减少启动噼噗声。

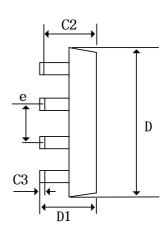

7、模拟参考电压端电容

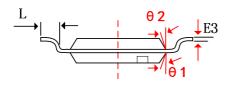
LTK5128包含有使开启或关断的瞬态值或"滴答声和爆裂声"减到最小的电路。讨论中开启指的是电源电压的加载或撤消关断模式。当电源电压逐渐升至最终值时,LTK5128的内部放大器就好比配置成整体增益的缓冲器一样,内部电流源加载一个受线性方式约束的电压到BYPASS管脚。理论上输入和输出的电压高低将随加到BYPASS管脚的电压而改变。直到加载至BYPASS管脚的电压升到VDD/2,内部放大器的增益保持整体稳定。加载到BYPASS管脚上的电压一稳定,整个器件就处于完全工作状态。LTK5128的输出达到静态直流电压的时间越长,初始的瞬态响应就越小。选择2.2uf的电容同时配以一个在0.1uf到0.39uf间变化的小电容,可以产生一个滴答声和爆裂声都较小的关断功能。由以上讨论可知,选择一个不超过指定带宽要求的电容Ci可以帮助降低滴答声现象。


8、EMI的减小

在电源端加一个 470uF 以上的耦合电容,能有效减小 EMI,前提是放大器到扬声器的距离小于(<20CM)。 大部分应用是需要一个如图 2 所示的磁珠滤波器,滤波器有效地减小了 1MHz 以上的 EMI,该应用,在高频 是应选择高阻抗的,而在低频率是应选择低阻抗的。


9、RC缓冲电路


RC 缓冲电路可以有效的降低由于感性负载在电流突变时产生的高电压,防止烧坏芯片,特别对于升压 IC 供电的情况。



10、芯片的封装

2014 V1.1

字符	Dimens	Dimensions In Millimeters			Dimensions In Inches		
子 何	Min	Nom	Max	Min	Nom	Max	
A	2. 31	2. 40	2. 51	0. 091	0. 094	0. 098	
В	3. 20	3. 30	3. 40	0. 126	0. 129	0. 132	
C	3.8	3. 90	4. 00	0. 150	0. 154	0. 157	
C1	5. 8	6. 00	6. 2	0. 228	0. 235	0. 244	
C2	1. 35	1. 45	1. 55	0. 053	0. 058	0. 061	
C3	0. 05	0. 12	0. 15	0. 004	0. 007	0. 010	
D	4. 70	5. 00	5. 1	0. 185	0. 190	0. 200	
D1	1. 35	1. 60	1. 75	0. 053	0.06	0. 069	
е	1. 270 (BSC) 0. 050 (BSC)						
L	0. 400	0. 83	1. 27	0. 016	0. 035	0. 050	

ESOP-8